DATA CITATION: PRINCIPLES \& PRACTICES

Mercè Crosas, Ph.D.
IQSS, Harvard University
- @mercecrosas

Micah Altman, Ph.D. MIT
© @drmaltman
Beyond the PDF 2,Amsterdam, March 19-20

THE COMPLETE SURVEY OF OUTFLOWS IN PERSEUS

Héctor G. Arce ${ }^{1}$, Michelle A. Borkin ${ }^{2}$, Alyssa A. Goodman ${ }^{3}$, Jaime E. Pineda ${ }^{3}$, and Michael W. Halle ${ }^{4,5}$
${ }^{1}$ Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520, USA; hector.arce@yale.edu
${ }^{2}$ School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA
${ }^{3}$ Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
${ }^{4}$ Surgical Planning Laboratory, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
${ }^{5}$ Initiative in Innovative Computing, Harvard University, 60 Oxford Street, Cambridge, MA 02138, USA
Received 2009 October 7; accepted 2010 April 9; published 2010 May 7

Abstract

We present a study on the impact of molecular outflows in the Perseus molecular cloud complex using the COMPLETE Survey large-scale ${ }^{12} \mathrm{CO}(1-0)$ and ${ }^{13} \mathrm{CO}(1-0)$ maps. We used three-dimensional isosurface models generated in right ascension-declination-velocity space to visualize the maps. This rendering of the molecular line data allowed for a rapid and efficient way to search for molecular outflows over a large ($\sim 16 \mathrm{deg}^{2}$) area. Our outflow-searching technique detected previously known molecular outflows as well as new candidate outflows. Most of these new outflow-related high-velocity features lie in regions that have been poorly studied before. These new outflow candidates more than double the amount of outflow mass, momentum, and kinetic energy in the Perseus cloud complex. Our results indicate that outflows have significant impact on the environment immediately surrounding localized regions of active star formation, but lack the energy needed to feed the observed turbulence in the entire Perseus complex. This implies that other energy sources, in addition to protostellar outflows, are responsible for turbulence on a global cloud scale in Perseus. We studied the impact of outflows in six regions with active star formation within Perseus of sizes in the range of $1-4 \mathrm{pc}$. We find that outflows have enough power to maintain the turbulence in these regions and enough momentum to disperse and unbind some mass from them. We found no correlation between outflow strength and star formation efficiency (SFE) for the six different regions we studied, contrary to results of recent numerical simulations. The low fraction of gas that potentially could be ejected due to outflows suggests that additional mechanisms other than cloud dispersal by outflows are needed to explain low SFEs in clusters.

Key words: ISM: clouds - ISM: individual objects (Perseus) - ISM: jets and outflows - ISM: kinematics and dynamics - stars: formation - turbulence
Online-only material: color figures
in IC 348 (HD 281159) is confirmed to reside in the Perseus cloud, but there might be a few other high-mass stars that in teract with the cloud (through their winds and/or UV radiation) ven though they were not necessarily formed in the cloud com plex (see, e.g., Walawender et al. 2004; Ridge et al. 2006a; Kirk of nebulow; Rebull et al. 2007). There is also a large number objects and H_{2} knots) that have been identified in the clou complex (Bally et al. 1996b, 1997; Yan et al. 1998; Walawende t al. 2005b; Davis et al. 2008).
The whole Perseus region was first surveyed in ${ }^{12} \mathrm{CO}$ by Sargent (1979), and since then has been mapped in CO a different angular resolutions (all with beams $>1^{\prime}$) by a number of other authors (e.g., Bachiller \& Cernicharo 1986; Ungerechts
\& Thaddeus 1987; Padoan et al. 1999; Sun et al. 2006). These maps show a clear velocity gradient in the Perseus molecula cloud complex where the central cloud (LSR) velocity increases from about $4.5 \mathrm{~km} \mathrm{~s}^{-1}$ at the western edge of the cloud to about $10 \mathrm{~km} \mathrm{~s}^{-1}$ at the eastern end. The large velocity gradient in the gas across the entire complex and the fact that different part f the Perseus cloud appear to have different distances (see above) could possibly indicate that the complex is made up of a superposition of different entities. Recently, the Perseu molecular cloud complex was also observed (and studied) in its entirety in the mid- and far-infrared as part of the "From Molecular Cores to Planet-forming Disks" (aka c2d) Spitzer Legacy Project (Jørgensen et al. 2006; Rebull et al. 2007; Evan
2. DATA

In this paper, we use the ${ }^{12} \mathrm{CO}(1-0)$ and ${ }^{13} \mathrm{CO}(1-0)$ data collected for Perseus as part of the COordinated Molecula Probe Line Extinction Thermal Emission (COMPLETE) Sur vey of Star Forming Regions, ${ }^{6}$ described in detail by Ridge tt al. (2006b). The ${ }^{12} \mathrm{CO}$ and ${ }^{13} \mathrm{CO}$ molecular line maps wer observed between 2002 and 2005 using the 14 m Five College Radio Astronomy Observatory (FCRAO) telescope with the SE with a digital correlator providing a total bandwidth of 25 MH over 1024 channels. The ${ }^{12} \mathrm{CO} J=1-0(115.271 \mathrm{GHz})$ and th ${ }^{13} \mathrm{CO} J=1-0(110.201 \mathrm{GHz})$ transitions were observed simul taneously using an on-the-fly (OTF) mapping technique. Th beam telescope at these frequencies is about $46^{\prime \prime}$. Both maps of ${ }^{2} \mathrm{CO}$ and ${ }^{13} \mathrm{CO}$ are essential for a thorough study of the outflow and cloud properties. The ${ }^{12} \mathrm{CO}(1-0)$ is a good tracer of the coo and massive molecular outfows and provides the information needed to study the impact of these energetic phenomena on the cloud. The ${ }^{13} \mathrm{CO}(1-0)$ provides an estimate of the optica depth of the ${ }^{12} \mathrm{CO}(1-0)$ line and can be used to probe the cloud tructure and kinematics.
Observations were made in $10^{\prime} \times 10^{\prime}$ maps with an effective velocity resolution of $0.07 \mathrm{~km} \mathrm{~s}^{-1}$. These small maps were the is about $6.25 \times 3^{\circ}$. Calibration was done via the chopper-whee echnique (Kutner \& Ulich 1981), yielding spectra with unit of T_{A}^{*}. We removed noisy pixels that were more than 3 time the average rms noise of the data cube, the entire map wa then resampled to a $46^{\prime \prime}$ grid, and the spectral axis was Hanning smoothed ${ }^{7}$ (necessary to keep the cubes to a size manageable by

See http://www.cfa.harvard.edu/COMPLETE

See http://www.cfa.harvard.edu/COMPLETE.
See htpp://www.cfa.harvard.edu/COMPLETE/projects/outflows.html for a
ink to the molecular line maps.
the three-dimensional visualization code, see below). During the observations of the Perseus cloud, different OFF positions were of these OFF positions had faint, though significant, emission which resulted in an artificial absorption feature in the final spectra. Gaussians were fitted to the negative feature in regions with no gas emission, and the fits were then used to correct for the contaminating spectral component. The resulting mean 3σ rms per channel in the ${ }^{12} \mathrm{CO}$ and ${ }^{13} \mathrm{CO}$ maps are 0.25 and 0.20 K , respectively, in the T_{A}^{*} scale. Spectra were corrected for the main beam efficiencies of the telescope (0.49 and 0.45 at 110 and 115 GHz , respectively), obtained from measurements of Jupiter.
3. COMPUTATIONAL MOTIVATION AND

THREE-DIMENSIONAL VISUALIZATION
This study allows for a test of the effectiveness of threedimensional visualization of molecular line data of molecular clouds in R.A.-decl.-velocity ($p-p-v$) space as a way to identify velocity features, such as outflows, in large maps. ${ }^{8}$ The primary program used for three-dimensional visualization is 3D Slicer ance wasoratory and the Surgical Planning Lab Brighmand Women's Hospital It was designed to help surgeons in image guided surgery, to assist in pre-surgical preparation, to be used as a diagnostic tool, and to help in the field of brain research and visualization (Gering 1999). The 3D Slicer was first used with astronomical data by Borkin et al. (2005) to study the hierarchical structure of star-forming cores and velocity structure of IC 348 with ${ }^{13} \mathrm{CO}(1-0)$ and $\mathrm{C}^{18} \mathrm{O}(1-0)$ data.
We divided the Perseus cloud into six areas (with similar cloud central LSR velocities) for easier visualization and outflow search in 3D Slicer (see below). The borders of these areas are similar to those named by Pineda et al. (2008), who also based their division mainly on the cloud's central LSR velocity. The regions, whose outlines are shown in Figure 1, overlap overlap was checked to be sufficient based on the fact that new and known outflows which crossed regions were successfully double-identified.
For each area, an isosurface (constant intensity level) model was generated in 3D Slicer, using the ${ }^{12} \mathrm{CO}(1-0)$ map. The threshold emission intensity level chosen for each isosurface model was the lowest level of emission above the rms noise level for that particular region. This creates a three-dimensional model representing all of the detected emission. The highvelocity gas in this three-dimensional space can be identified in the form of spikes, as shown for the B5 region in Figure 2, Thes adial velocity thus causing spikes wherever there is gas at distinct velocities far away from the main cloud velocity. Instead of having to go through each region and carefully examine each channel map or andomly scroll through the spectra by hand, this visualization allows one to instantly see where the high-velocity points are located (see also Borkin et al. 2007, 2008).

8 This work is done as part of the Astronomical Medicine project
(http://am.iic. harvard.edu) at the Initiative in Innovative Computing at Harvard
(http://iic.harvard.edu). The goal of the project is to address common research (http:///ici. harvard.edu). The goal of the project is to address common research
challenges to both the fields of medical imaging and astronomy including visualization, image analysis, and accessibility of large varying kinds of data

Figure 2. Three-dimensional rendering of the molecular gas in B5 (i.e., Area ${ }_{12}$ VI in Figure 1), using 3D Slicer. The gray (green) isosurface model shows the ${ }^{12} \mathrm{CO}$ emission in position-position-velocity space. The small circles show the
${ }^{\text {locations of identified high-velocity points (with the color in the online version }}$ locations of identified high-velocity points (with the co
representing whether the point is blue- or red-shifted).
(A color version of this figure is available in the online journal.)

4. OUTFLOW IDENTIFICATION

A total of 218 high-velocity points were visually identified in 3D Slicer for all of Perseus in ${ }^{12} \mathrm{CO}$. We checked the position of each high-velocity point against the locations of known outflows (based on an extensive literature search) to determine if the point is associated with any known molecular outflow. From the 218 high-velocity points found, a total of 36 points were identified as associated with known molecular outflows. Figure 3 shows the approximate regions where previously known ${ }^{12} \mathrm{CO}(1-0)$ outflows lie. The number of high-velocity points associated with a single outflow varies depending on its size and intensity. For example, the parsec-scale B5 IRS1 outflow is a conglomerate of six high-velocity points whereas the HH 211 outflow, which is only $\sim 0.1 \mathrm{pc}$ long, is identified by only one point. We inspected they are outflow related or caused by other velocity features in the cloud. To determine if a high-velocity point is outflow related, we checked the spectrum by eye to look for outflow traits (e.g., high-velocity low-intensity wings) and verified its proximity to known outflows and outflow sources (Wu et al. 2004), HH objects (Walawender et al. 2005b), H_{2} knots (Davis et al. 2008), candidate young stellar objects (YSOs) form the c2d Spitzer survey (Evans et al. 2009) and other known outflow sources and YSOs. We also checked the velocity distribution and morphology of the gas associated with each high-velocity were significantly different from that of the cloud in that region From the remaining 182 high-velocity points found, a total of 60 points were classified as being outflow candidates based on the criteria mentioned above. For 97% of these outflow candidates, the maximum velocity away from the cloud velocity is equal to or greater than the escape velocity in that region of the cloud. We note that we purposely chose not to be too restrictive in the definition of outflow candidate (e.g., we identified outflow candidates even without a solid outflow source identification, see

Figure 3. Spitzer IRAC (color) image of the c2d coverage of the Perseus cloud made from 3.6, 4.5, and $8.0 \mu \mathrm{~m}$ images of the region (Evans et al. 20099). The color code is blue $(3.6 \mu \mathrm{~m})$, green $(4.5 \mu \mathrm{~m})$, and red $(8.0 \mu \mathrm{~m})$. Ellipses and
squares with rounded corners show the approximate regions where previously known outflows in Perseus lie. The gray contours show the $4 \mathrm{Kkm} \mathrm{s}^{-1}$ level of the ${ }^{13} \mathrm{CO}(1-0)$ integrated intensity map (not corrected for the FCRAO beam efficiency).
below). Using our broad, yet realistic, definition we can calculate the maximum possible impact from all plausible molecular outflows to the cloud. Out of the remaining 122 points, 17 points by the map's edge and the other 105 points are thought to be caused by a number of other kinematic phenomena, including clouds at other velocities in the same line of sight unrelated to the Perseus cloud and spherical winds from young stars that produce expanding shell-like structures in the molecular gas (as opposed to the discrete blob morphology observed in the 60 outflow candidates). The distribution and impact of these expanding shells on the cloud will be discussed further in a subsequent paper (H. G. Arce et al. 2011, in preparation).
ing each of the 60 high-velocity points identified as outflow in origin (but unrelated to known outflows) and chose an area (in R.A.-decl. space) and velocity range that included all or most of the emission associated with the kinetic feature. The integration area and velocity ranges were conservatively chosen to include only the emission visibly associated with the outflowing material, thus avoiding cloud emission. The high-velocity gas associated with these 60 points shows discrete morphologies in area and velocity. Hereafter each of these high-velocity features is referred as a "COMPLETE Perseus Outflow Candidate (${ }^{10}$ In) and in comprison with their local cloud (LSR) velocity Our outflow-detection technique proved to be rel detect high-velocity gas associated with all published $\mathrm{CO}(1-0)$ outflows (see Figure 3). However, it is very probable that the catalog of new molecular outflows generated for this paper is an underestimate of the true number of previously undetected molecular outflows due to the resolution of the CO maps and other limitations of our outflow-detection technique. Unknown outflows that are smaller than the beam size of our map (i.e., 0.06 pc at the assumed distance of Perseus) or that have weak fo the spectra at that particular position) cannot be detected by our technique. Outflows with maximum velocities too close to
${ }^{10}$ See http://www.cfa.harvard.edu/COMPLETE/projects/outflows.html for a link to the fits cubes and the integrated intensity fits files of the CPOCs, as well
as a list of the YSO candidates, HH objects, and H_{2} knots in the cloud.
 fond bat there migla be a fow ofar high-mas vens deat is
 ven thoughthey werenal necestarily formod in the chood oon. ike (ose, e.g. Wilasonder st al 2004, Ridgest al. 200ta; Kiri

 Hjeoss and H_{2} keots) that have beon identifod in the clowd comples iBally et al 199fl. 1997, Yat et al. 1908 . Waluwender ald socch Peris et al swos.
The obsel Porses mgion was firat surngod is "CO by

 mugs dow a cloz velocity mpliont in the Poreus molocula
 bomatopt $45 \mathrm{Kms}^{-1}$ at the wedern edpe of the choud to atoen $10 \mathrm{~km} s^{-1}$ at the casers ond. The large whonsy gradiens is the gas across the eatire complex and the fact thit afferen pans f the Penous cloed appeir to hive different divanss (wec bowe) condd ponshly incticule that the comples is made up of a uperposition of difiran entitics, Peccritly, the Porwu
 es cevirety in the mid and fariefowod as pur of the "Fiem Wolkcula Coees to Planes-forming Disk" Gaka c200 Spitser
 tal 2001

2 I DKTA

 herct for Perwes as pant of the COondinued Molicula Probe I

6 See http://www.cfa.harvard.edu/COMPLETE.
ibsroc

Kation

Quola
misal 10
$\mathrm{CO} /$
foan tele $\mathrm{CO}=3 d^{16} \mathrm{CO}$ ane esurebial for a thorosth mady of the outtion
 and masuive molocalar ocutloss and porvides the indomatios woded to thads the import of these esergatic phoweness oa We thent The "COM l-OM powider as edinuse of the optizal dopthof the "COC(1-6p line aed cas be used le probe the diond nusiare asd hinematic.
Ohesrabinss were made in 10×10 mupe with an effictivy whosity rewhation of $0.07 \mathrm{im} \mathrm{y}^{-1}$. These criall mupe wary ther
 drique iKiter \& ITich 1981 L yikling specm with usith If T_{i}^{-}We remeved neisy pixels bit wire mate than 3 time foe average min mine of the data cule, tbe cuire map wa the reanpled to a to grid and the pectral anis was lluraing resoched' (Eecewary wiofe the cubes bo a sise manugoble by

 Aservilios of the Pirees cloed differes OFF posions wet ised dopesing of the locrition than was beieg mippod. Som these OFF positions had faink. though sigrificing, cinimis
 pectuc. Cuasians wew find to the acgative fexare is regiong

 GOK, roppotivaly, a the J_{n} wall. Spectra were corneciod fir he main beam cticiciocios of the iolowope (0.2N and 0.45 at 10 and 115 Gilts, vespestivelyh obtained of Jopar.
3. COMPUTATIONAL MOTTVATION AND THREE DIMENSIONAL VISUALIZATION

This stady allose foe a teat of the eflictivesens of throc inocriseal viemlization of molecular lise dats of meloculay lowds a R A -dovi-velocity (p-p-v) spawe as a way ta ilectify vebowly featares. seeh as actinos, is lage naps. De primary bhict seas dockopol atipisalls it he MIT Atrificill Inter

 is a dumoule fool, mad on lelo in the field of lozin weeanch and visualiration (Gering 1999). The 3D Sliver sas firs uned with utrosemical dit by Roskia st al. (2006) to staly the ho

 comil LSR velocities) for casior virulization and outlion

COTTH COW DIM NTHPCATMON
A socil of 218 hiph-whaity points were vaually identitedia 10Sliser fer all of Rewes is "CO. Wi cherked the positios of
 eve wewhiso dawnine if hep pisis molectalat ostion Fon tive 218 bal of 3 poists wote identifind
 theclocity poinb anowitul siat ding os itt vine and imbonity. For
 cas the HH 211 osthro, shich is dby only afs posis. We inypewd
andel was the loweat level of enissice above the mas noves ovel for dut particuls region. Thiscerates a thepe-diawnuicou owad rerewniag all of the d
 a dic fam of pacs, as hivan ax. These shap perctrucione osc cas. These shup protrusicra ese has coming spiles whower the fer anay from the main dowd vel hoogh calh region and carcfully hoogh cxat rcpon asd cactully Allows one to indantly we whire the high-velosity poiks ale bouted (sev aloo Botisect al. 2007, 20085.

 (1)-
位 Basimes posille ingac froes all plouible medevila ouflestrothechod the of the remining 122 polers. 17 puits
 caned by a aumber of ober linemale phenonena, including clowdi at ochar velocibiss in the same line of sighte strelated to the Prown chood and phorizal wind from youer tarn Ars
 isu apposed to the deswese blab mopbetogy observed in the 60 ouflow candidsock. The distriktiose asd impast of these esporing shells on the choud will be Aswused furthr it whowens puper ill G. Ane ss al 2011 is peqparsinal.

 of the criomo associatd with the tivetic forure The inteprotion ara and velocity rapre wer crenervatuly chomen 59 iclate oely the enisuise sishly ausciand with the couthowise mubcial thas aveitise clowi enision. The hiph-velovify gis asobised with these 60 peists shows diswese mophelogies ie arca und velocity. Borsifter exh of dese high-velowiog
 Ale" ICFOC) und we list their positiots and other properise in
> ${ }^{10}$ See http://www.cfa.harvard.edu/COMPLETE/projects/outflows.html for a link to the fits cubes and the integrated intensity fits files of the CPOCs, as well as a list of the YSO candidates, HH objects, and H_{2} knots in the cloud.
ofliutle, as we Nhed CO: $11-0$) tulte that the c this puper is dy underowed CO apes and aw. Unhawn our map lie.

60 points ware clawifiod is baing cuitbow candilites bused oa the chitctia merriond bove. For 97% of these ouito

 in the deflinition of oothow tandidite iseg- we idontifed ouriloe

hifh-edoxiry wisps (i.e. withinctsibies lessthin rwice ferms

IC 348 (HD 281159) is confirmed to reside in the Perseus loud, but there might be a few other high-mass stars that ineract with the cloud (through their winds and/or UV radiation) en though they were not necessarily formed in the cloud con lex (see, e.g., Walawender et al. 2004; Ridge et al. 2006a, Kial. 2006; Rebull et al. 2007). There is also a large numbe objects and H_{2} knots) that have been identified in the cloud complex (Bally et al. 1996b, 1997; Yan et al. 1998; Walawender t al. 2005b; Davis et al. 2008).
The whole Perseus region was first surveyed in ${ }^{12} \mathrm{CO}$ by Sargent (1979), and since then has been mapped in CO at different angular resolutions (all with beams $>1^{\prime}$) by a number of other authors (e.g., Bachiller \& Cernicharo 1986; Ungerechts \& Thaddeus 1987; Padoan et al. 1999; Sun et al. 2006). These maps show a clear velocity gradient in the Perseus molecular cloud complex where the central cloud (LSR) velocity increases from about $4.5 \mathrm{~km} \mathrm{~s}^{-1}$ at the western edge of the cloud to about $10 \mathrm{~km} \mathrm{~s}^{-1}$ at the eastern end. The large velocity gradient in the gas across the entire complex and the fact that different parts the Persens cossibly indicate that the complex is made up of a superposition of different entities. Recently, the Perseus olecular cloud complex was also observed (and studied) in its entirety in the mid- and far-infrared as part of the "From Molecular Cores to Planet-forming Disks" (aka c2d) Spitzer egacy Project (Jørgensen et al. 2006; Rebull et al. 2007; Evans et al. 2009).

2. DATA

In this paper, we use the ${ }^{12} \mathrm{CO}(1-0)$ and ${ }^{13} \mathrm{CO}(1-0)$ data collected for Perseus as part of the COordinated Molecular robe Line Extinction Thermal Emission (COMFLETE) Survey of Star Forming Regions, ${ }^{6}$ described in detail by Ridge ot acerved between 2002 and 2005 using the 14 m Five College Radio Astronomy Observatory (FCR AO) telescope with the SEQUOIA 32-element focal plane array. The receiver was used with a digital correlator providing a total bandwidth of 25 MHz over 1024 channels. The ${ }^{12} \mathrm{CO} J=1-0(115.271 \mathrm{GHz})$ and the ${ }^{3} \mathrm{CO} J=1-0(110.201 \mathrm{GHz})$ transitions were observed simulaneously using an on-the-fly (OTF) mapping technique. The beam telescope at these frequencies is about $46^{\prime \prime}$. Both maps of ${ }^{2} \mathrm{CO}$ and ${ }^{13} \mathrm{CO}$ are essential for a thorough study of the outflow and cloud properties. The ${ }^{12} \mathrm{CO}(1-0)$ is a good tracer of the cool and massive molecular outflows and provides the information needed to study the impact of these energetic phenomena on he cloud. The ${ }^{13} \mathrm{CO}(1-0)$ provides an estimate of the optical depth of the ${ }^{12} \mathrm{CO}(1-0)$ line and can be used to probe the cloud
 smoothed ${ }^{7}$ (necessary to keep the cubes to a size manageable by

See http://www.cfa.harvard.edu/COMPLETE
See htp:///www.cfa..arvarad.e.
link to the molecular line maps.
the three-dimensional visualization code see below) During the observations of the Perseus cloud, different OFF positions were used depending on the location that was being mapped. Some these OFF positions had faint, though significant, emission which resulted in an artificial absorption feature in the final spectra. Gaussians were fitted to the negative feature in regions with no gas emission, and the fits were then used to correct for the contaminating spectral component. The resulting mean 3σ rms per channel in the ${ }^{12} \mathrm{CO}$ and ${ }^{13} \mathrm{CO}$ maps are 0.25 and 0.20 K , respectively, in the T_{A}^{*} scale. Spectra were corrected for the main beam efficiencies of the telescope (0.49 and 0.45 at 110 and 115 GHz , respectively), obtained from measurements of Jupiter
3. COMPUTATIONAL MOTIVATION AND THREE-DIMENSIONAL VISUALIZATION

This study allows for a test of the effectiveness of threedimensional visualization of molecular line data of molecular clouds in R.A.-decl.-velocity ($p-p-v$) space as a way to identify velocity features, such as outflows, in large maps. ${ }^{8}$ The primary which used for three-dimensional visualization is 3D which was developed originally at the MIT Artificial Intell gence Laboratory and the Surgical Planning Lab at Brigham and Women's Hospital. It was designed to help surgeons in image guided surgery, to assist in pre-surgical preparation, to be used and visualization (Gering 1999). The 3D Slicer was first used and visualization (Gering 1999). The 3D Slicer was first used with astronomical data by Borkin et al. (2005) to study the hierarchical structure of star-forming cores and velocity structure of IC 348 with ${ }^{13} \mathrm{CO}(1-0)$ and $\mathrm{C}^{18} \mathrm{O}(1-0)$ data.
We divided the Perseus cloud into six areas (with similar cloud central LSR velocities) for easier visualization and outflow search imilar to those named by Pineda et al. (2008), who also based their division mainly on the cloud's central LSR velocity The regions, whose outlines are shown in Figure 1, overlap between 1 and 3 arcmin to guarantee complete analysis. This overlap was checked to be sufficient based on the fact that new and known outflows which crossed regions were successfully double-identified.
For each area, an isosurface (constant intensity level) model was generated in 3D Slicer, using the ${ }^{12} \mathrm{CO}(1-0)$ map. The threshold emission intensity level chosen for each isosurface model was the lowest level of emission above the rms noise level for that particular region. This creates a three-dimensional model representing all of the detected emission. The highvelocity gas in this three-dimensional space can be identified in the form of spikes, as shown for the B5 region in Figure 2,
(http:///am.iic.harvard.edu) at the Initiative in Innovative Computing at Harvard
(http://iic.harvard.edu). The goal of the project is to address common research (http://iic.harvard.edu). The goal of the project is to address common research chailenges to both the fields of medical imaging and astronomy including
visualization, image analysis, and accessibility of large varying kinds of data. ${ }^{9}$ http://www.slicer.org/

\section*{387,954 De Gregori

 De GregorioTorrelles
Dubinki, J.
Eisliffel, J. Eislofffel, ,
Eisloffel, ,
259 STMUC
 CITAFIONS}
at redshifted velocities. CPOC 47 is located just to the north of IC 348 where there are a number c2d YSO candidates, and this candidate outflow is most probably associated with one of these sources rather than any of the sources in B5. CPOC 52 is a blob with relatively high-velocity blueshifted gas, significantly different from ambient cloud velocities (see Figure 4). CPOCs 53 and 54 have redshifted velocities and may be associated with HH 844 and IRAS $03439+3233$ (also known as B5-IRS3). CPOC 57 is redshifted and is located about 10^{\prime} northeast of B5IRS4, while CPOC 58 is located south of the blueshifted lobe of B5-IRS1 and it is not clear to which young star in the region our map. We classify it as a candidate outflow because of its morphology and velocity structure

REFERENCES
Andersson, B.-G., Wannier, P. G., Moriarty-Schieven, G. H., \& Bakker, E.J. 2000, AJ, 119,1325
Arce, H. G., \& Goodman, A. A. 2001a, ApJ, 551, L17 Arce, H. G., \& Goodman, A. A. 2001b, App, 554, 13 Arce, , H. G., \& Goodman, A. A. 2002a, ApJ, 575,911
Arce, H. G., \& Sargent, A. I. 2005, ApJ, 624, 232
Arce, H. G., \& Sargent, A. I. 2006, ApJ, 646, 1070
Arce, H. G., Shepherd, D., Gueth, F., Lee, C.-F., Bachiller, R., Rosen, A., \&
Beuther, H. 2007, in Protostars and Planets V,ed. B. Reipurth, D. Jewitt, \&
K. Keil (Tucson, AZ: Univ. Arizona Press), 245
Aspin, C., Sandell, G., \& Russell, A. P. G. 1994, A\&AS, 106, 165

Bachiller, R., \& Cernicharo, J. 1984, A\&A, 140, 114

Bachiller, R., \& Cernicharo, J. 1986, A\&A, 168,262
Bachiller, R., Gueth, F., Guillotean, S. Taflla M., \& Dutrey, A. 2000, A\&A,
Bachiller, R., Martin-Pintado, J., \& Planesas, P. 1991, A\&A, 251, 639
Bachiller, R., Martin-Pintado, J., Tafalla, M., Cernicharo, J., \& Lazareff, B.
1990a, A\&A, 231,174
Bachiller, R., Menten, K. M., \& del Rio Alvarez, S. 1990b, A\&A, 236, 461 Banerjee, R., Klessen, R. S., \& Fendt, C. 2007, ApJ, 668, 1028 Bally, J., Devine, D., \& Alten, V. 1996a, ApJ, 473, 921 Bally J.,., Devine, D., Alten, V., \& Sutherland, R. S. 1997, ApJ, 478, 603
Bally J.
 Bally, J., Reipurth, B., Lada, C., \& Billawala, Beichman, C. A., et al. 1984, ApJ, 278, L45
Borkin. M.. Arce H. G.
, 1999, AJ, 117,410 Borkin, M., Arce. Ho., Goodman, A., \& Halle, M. 2008, ASPC, 394, 145 Borkin, M., Goodman, A., Halle, M., \& Alan, D. 2007, ASPC, 376, 621
Borkin, M. A., Ridge, N. A., Goodman, A. A., \& Halle, M. 2005, arXiv: astro-ph/0506604
int. C. M., Heyer, M. H., \& Mac Low, M.-M. 2009, A\&A, 504,883 Carroll, J. J., Frank, A.. Blackman, E. G., Cunningham, A. J., \& Quillen, A. C. Cernicharo, J., \& Reipurth, B. 1996, ApJ, 460, L57
Cernis, K. 1990, Ap\&SSS, 166, 315
hoi, M., Hodapp, K. W., Hayashi, M., Motohara, K., Pak, S., \& Pyo T.S.
2006, ApJ, 646, 1050
nningham, A. J., Frank, A., Carroll, J., Blackman, E. G., \& Quillen, A. C avis.

Falgarone, E., Pety, J., \& Hily-Blant, P. 2009, A\&A, 507, 35
Falgarone, E., \& Phillips, T. G. 1990, ApJ, 359, 344

Falgarone, E.. Pineau Des Forêts, G., Hily-Blant, P., \& Schilke, P. 2006, \& A Fukui, Y., Sugitani, K., Takaba, H., Iwata, T., Mizuno, A., Ogawa, H., \&
Kawabata, K. 1986, ApJ, 311, L85 Kawabata, K. 1986, ApJ, 311, L85 Fuller, G. A.., Ledad, E. F.
Fuller, G. A., Myers, P. C., Welch, W. J., Goldsmith, P. F., Langer, W. D.,
Cater Campbell, B. M. .., Guilloteau, S., \& Wilson, R. W. 1991 , Apt, 376, 135
Cering Gering, D. 1999, Master's thesis, MIT
Goldsmith, P. F., Langer, W. D., \& Wilson, R. W. 1986, ApJ, 303, L11
Goodman, A. A., \& Arce, H. G. 2004, ApJ, 608,831
Goodman, A. A., Crutcher, R. M., Heiles, C., Myers, P. C., \& Troland, T. H.
1989, AD . 338 , L61 1989, App, ,338, L61
Guenthner K 200
Guenthner, K. 2009, Master's thesis, Univ. Leipzig
Gueth, F., \& Guilloteau S.
Gueth, F., \& Guilloteau, S. S. 9999 , A\&A, 3, 343, 571
Gutermuth, R. A., et al. 2008, ADI 674, 336
Gutermuth, R. A.,et al.
Hartigan, P., Bally, J., Reipurth, A., B., \& Morse, J. A. 2000, in Protostars and
Planets IV ed V. V Mannings, A. P Boss. \& S. S. Ruscell (Tucson Manets IV, ed. V. Mannings, A. P. Boss
Arizona Press), 841 Hartmann, L., Ballesteros-Paredes, J., \& Bergin, E. A. 2001, ApJ, 562,852
Hatchell, Hatchell, J., \& Dunham, M., M. 2009, A\&A, 502, 139
Hatchell, J., Fuller, G. A., \& Richer, J. S. 2007, A\&A, 472,187 Hatchenll, J.,. Fulier, G. A., \& Richer, J. S. 2007, A\&A, 472, 187
Hatchen, J., Richer, J. S., Fuller, G. A., Qualtrough, C. J., Ladd, E. F., \& Chandler, C. J. 2005, A\&A, 440, 151
Herbig, G. H., \& Jones, B. F. 1983 ,
Herbig, G. H., \& Jones, B. F. 1983, AJ, 88, 1040
Regions, Vol. I: The Northern Sky, ed. B. Reipurth (San Francisco, CA: ASP), 372
Hiramatsu, M., Hirano, N., \& Takakuwa, S. 2010, ApJ, 712,778
Hirano, N., Kameya, O., Mikami, H., Saito, S., Umemoto, T., \& Yamamoto, S.
1997, ATD, 478, 631 Hirano, N., \& Taniguchi, Y. 2001, ApJ, 550, L219
Hirota, T., et al. 2008, PASJ, 60, 37
Jørgensen, J. K., Hogerheijde, M. R., Blake, G. A., van Dishoeck, E. F., Mundy, L. G., \& Schöier, F. L. 2004, A\&A, 413,
Jørgensen, J. K., Johnstone, D., Kirk, H., Myers, P. C., Allen, L. E., \& Shirley, J. L. 2008, ApJ, 683, 822

Jorgensen, J. K., et al. 2006, ApJ, 645, 1246
Kirk, H., Johnstone, D., \& Di Francesco, J. 2006, ApJ, 646,1009
Knike H., J. B. G., \& Sandell, G. . 2000, A\&A, 301, 671
Kutner, M. L., \& Ulich, B. . 1981, Ap, 250, 341
Kwon, W., Looney, L. W.., Crutcher, R. M., \& Kirk, J. M. 2006, ApJ, 653,

Lada, C. J., Alves, J., \& Lada, E. A. 1996, AJ, 111, 1964 Lada, C. J., \& Fich, M. 1996, A.

Lada, C. J., \& Fich, M. 1996, App, 4. 499, , 38

 Bouvier, J., \& Lada, C. J. 2003, ApJ, 593, 1093
Mac Low, M.-M. 1099 ,
Mac Low, M.-M. 1999, ApJ, 542, 169
Margulis, M., \& Lada, C J. 1985 , ApJ
Margulis, M., \& Lada, C. J. 1985, ApJ, 299,925
Margulis, M., \& Lada, C. J. 1986, ApJ, 309, L87
Masciadri, E., \& Raga, A. C. 5001, AJ, 121,408
Matzner, C. D. 2007. ADI 6501394
Matzner, C. D. 2007, ApJ, 599,1394
Matzner, C. D., \& McKee, C. F. 2000, ApJ, 545, 364
McCaughrean, M. J., Rayner, J. T., \& Zinnecker, H. 1994, ApJ, 436, L189
Muench, A. A. Lada, C. I. Luhman, K. L. Muzerole J.
Muench, A. A., Lada, C. J., Luhman, K. L., Muzerolle, J., \& Young, E. 2007, A
Nakamura, F., \& Li, Z.-Y. 2007, ApJ, 662, 395
Norman, C., \& Sikl, .1980, ApJ, 238, 158
Padoan, P., Bally, J., Billawala, Y., Juvela, M., \& N

Padoan, P., Bally, J., Billawala, Y Juvela, M. \& Nordund, A. 1999, ApJ, 525

TO PAPERS: TURED
 Stanke, T., \& Williams, J. P. 2007, AJ, 133, 1307 Sun, K., Kramer, C., Ossenkopf, V., Bensch, F., Stutzki, J., \& Miller, M. 2000, A\&A, 451, 539

PROBLEMS

- No standard guidelines for data citation
- No proper attribution, lacking persistent author identifiers
- Links to personal sites broken after some time

Pepe, Goodman, Muench, Crosas \& Erdmann, "Handling, Archiving and Citing Data in Astronomy," Forthcoming

From a corpus of 764 I publications in Astronomy:
> 50\% of links published prior to 200 I are broken

Data Citation Principles Workshop
 May 16 - May 17, 2011, IQSS at Harvard University

The goal of the Data Citation Principles workshop is to facilitate collaboration among leaders in publishing, data archiving and data citation research and to articulate common answers to core questions such as: Should data that is used to support published research results be cited in peer-reviewed articles presenting those results? Should each citation include sufficient information to allow a unique dataset to be identified over time? Should citations to data appear in a consistent place within publication? Should citations to data be indexable so that they can be used for linkage and impact analysis?

"The first principle for citing data, as identified by workshop participants was data citations should be first class objects for publication."

IC 348 (HD 281159) is confirmed to reside in the Perseu cloud, but there might be a few other high-mass stars that in-
teract with the cloud (through their winds and/or UV radiation) even though they were not necessarily formed in the cloud complex (see, e.g., Walawender et al. 2004; Ridge et al. 2006a; Kirk et al. 2006; Rebull et al. 2007). There is also a large number of nebulous objects associated with outflow shocks (i.e., HH objects and H_{2} knots) that have been identified in the cloud complex (Bally et al. 1996b, 1997; Yan et al. 1998; Walawender et al. 2005b; Davis et al. 2008).
The whole Perseus region was first surveyed in ${ }^{12} \mathrm{CO}$ by Sargent (1979), and since then has been mapped in CO at different angular resolutions (all with beams $>1^{\prime}$) by a number of other authors (e.g., Bachiller \& Cernicharo 1986; Ungerechts \& Thaddeus 1987; Padoan et al. 1999; Sun et al. 2006). These maps show a clear velocity gradient in the Perseus molecular cloud complex where the central cloud (LSR) velocity increases $10 \mathrm{~km} \mathrm{~s}^{-1}$ at the eastern end. The large velocity cradient in the 0 km s at the eastern end. The large velocity gradient in the of across the entire complex and the fact that different parss above) could possibly indicate that the complex is made up of a superposition of different entities. Recently, the Perseus molecular cloud complex was also observed (and studied) in its entirety in the mid- and far-infrared as part of the "From Molecular Cores to Planet-forming Disks" (aka c2d) Spitzer Legacy Project (Jørgensen et al. 2006; Rebull et al. 2007; Evans et al. 2009).

2. DATA

In this paper, we use the ${ }^{12} \mathrm{CO}(1-0)$ and ${ }^{13} \mathrm{CO}(1-0)$ data collected for Perseus as part of the COordinated Molecular
Probe Line Extinction Thermal Emission (COMPLETE) SurProbe Line Extinction Thermal Emission (COMPLETE) Sur-
vey of Star Forming Regions ${ }^{6}$ described in detail by Ridge et al. (2006b). The ${ }^{12} \mathrm{CO}$ and ${ }^{13} \mathrm{CO}$ molecular line maps were observed between 2002 and 2005 using the 14 m Five College observed between 2002 and 2005 using the 14 m Five College QUOIA 32-element focal plane array. The receiver was used with a digital correlator providing a total bandwidth of 25 MHz over 1024 channels. The ${ }^{12} \mathrm{CO} J=1-0(115.271 \mathrm{GHz})$ and the ${ }^{3} \mathrm{CO} J=1-0(110.201 \mathrm{GHz})$ transitions were observed simultaneously using an on-the-fly (OTF) mapping technique. The beam telescope at these frequencies is about $46^{\prime \prime}$. Both maps of ${ }^{12} \mathrm{CO}$ and ${ }^{13} \mathrm{CO}$ are essential for a thorough study of the outflow and cloud properties. The ${ }^{12} \mathrm{CO}(1-0)$ is a good tracer of the cool and massive molecular outflows and provides the information needed to study the impact of these energetic phenomena on depth of the ${ }^{12} \mathrm{CO}(1-0)$ line provides an estimate of the optical depth of the ${ }^{12} \mathrm{CO}(1-0)$ line and can be used to probe the cloud
structure and kinematics. Observations were m
Observations were made in $10 \times 10^{-}$maps with an effective
velocity resolution of $0.07 \mathrm{~km} \mathrm{~s}^{-1}$. These small maps were then patched together to form the final large map of Perseus, which is about $6.25 \times 3^{\circ}$. Calibration was done via the chopper-wheel technique (Kutner \& Ulich 1981), yielding spectra with units of T_{A}^{*}. We removed noisy pixels that were more than 3 times the average rms noise of the data cube, the entire map was then resampled to a $46^{\prime \prime}$ grid, and the spectral axis was Hanning smoothed ${ }^{7}$ (necessary to keep the cubes to a size manageable by

See http://www.cfa.harvard.edu/COMPLETE

See hitp.//Www.cfa. .harvard.
the three-dimensional visualization code, see below). During the used depending on the location that was being mapped. Some of these OFF positions had faint, though significant, emission of these OFF positions had faint, though significant, emission
which resulted in an artificial absorption feature in the final spectra. Gaussians were fitted to the negative feature in regions spectra. Gaussians were fitted to the negative feature in regions
with no gas emission, and the fits were then used to correct for the contaminating spectral component. The resulting mean 3σ rms per channel in the ${ }^{12} \mathrm{CO}$ and ${ }^{13} \mathrm{CO}$ maps are 0.25 and 0.20 K , respectively, in the T_{A}^{*} scale. Spectra were corrected for the main beam efficiencies of the telescope (0.49 and 0.45 at 110 and 115 GHz , respectively), obtained from measurements of Jupiter.
3. COMPUTATIONAL MOTIVATION AND

THREE-DIMENSIONAL VISUALIZATION

 program used for three-dimensional visualization is 3D Slicer gence Laboratory and the Surgical Planning Lab at Brigham and Women's Hospital. It was designed to help surgeons in imageguided surgery, to assist in pre-surgical preparation, to be used as a diagnostic tool, and to help in the field of brain research and visualization (Gering 1999). The 3D Slicer was first use
with astronomical data by Borkin et al. (2005) to study the hi with astronomical data by Borkin et al. (2005) to study the hi-
of IC 348 with ${ }^{13} \mathrm{CO}(1-0)$ and $\mathrm{C}^{18} \mathrm{O}(1-0)$ data.
We divided the Perseus cloud into six areas (with similar cloud central LSR velocities) for easier visualization and outflow search in 3D Slicer (see below). The borders of these areas are similar to those named by Pineda et al. (2008), who also based their division mainly on the cloud's central LSR velocity. The regions, whose outlines are shown in Figure 1, overlap between 1 and 3 arcmin to guarantee complete analysis. This and known outflows to be sufficient based on the fact that new double-identified.
For each area, an isosurface (constant intensity level) model was generated in 3D Slicer, using the ${ }^{12} \mathrm{CO}(1-0)$ map. The threshold emission intensity level chosen for each isosurface model was the lowest level of emission above the rms noise
level for that particular region. This creates a three-dimensional model representing all of the detected emission. The highvelocity gas in this three-dimensional space can be identified which visually stick out from the general distribution of the gas. These sharp protrusions occur since one is looking at the radial velocity component of the gas along the line of sight, thus causing spikes wherever there is gas at distinct velocities far away from the main cloud velocity. Instead of having to go through each region and carefully examine each channel map, or
randomly scroll through the spectra by hand, this visualization allows one to instantly see where the high-velocity points are located (see also Borkin et al. 2007, 2008)

8 This work is done as part of the Astronomical Medicine project
(http://am.iic.harvard.edu) at the Initititive in Innovative Computing at Harvard (http:///icichararard.edu). The goal of the project is to address common research
challenges to both the fields of medical imaging and astronomy including visualization, image analysis, and accessibility of large varying kinds of data
at redshifted velocities. CPOC 47 is located just to the north of IC 348 where there are a number c2d YSO candidates, and these sources rather than any of the sources in B5. CPOC 52 is blob with relatively high-velocity blueshifted gas, significantly different from ambient cloud velocities (see Figure 4). CPOC 53 and 54 have redshifted velocities and may be associated with HH 844 and IRAS $03439+3233$ (also known as B5-IRS3) CPOC 57 is redshifted and is located about 10 ' northeast of B5
IRS4, while CPOC 58 is located south of the blueshifted lobe IRS4, while CPOC 58 is located south of the blueshifted lobe
of B5-IRS1 and it is not clear to which young star in the region it is associated with. CPOC 60 is located at the eastern edge of our map. We classify it as a candidate outflow because of its morphology and velocity structure.

CITATIONTO DATA:

- In REFERENCES
- Made as EASY to CITE as OTHER WORKS
- Persistent identifiers to data (HANDLE/DOI)
- Persistent identifiers to authors (ORCID)

At minimum, all data necessary to understand, assess, extend conclusions in scholarly work should be cited.

- Citations should persist and enable access to fixed version of data at least as long as the citing work exists.
- Data citation should support unambiguous attribution of credit to all contributors

PRACTICES

A two year project to connect papers to data with PKP, IQSS @ Harvard, Micah Altman @ MIT

- Authors submit paper + research data through PKP's Open Journal System (OJS)
- 40 journals participating in the pilot project to test plugin
- Research data + metadata automatically deposited to journal's dataverse
- SWORD API from OJS to Dataverse

A data citation standard on the basis of provenance, replicability and attribution, generated automatically by the Dataverse:

Authors, Year, Title, Persistent Identifier (handle/DOI), Universal Numerical Fingerprint (UNF), Distributor, Version, [+ Optional Fields]

Altman \& King, 2007 "A Proposed Standard for the Scholarly Citation of Quantitative Data"

WHICHWORKFLOW?

More at:

 http://projects.iq.harvard.edu/ojs-dvn

 http://projects.iq.harvard.edu/ojs-dvn http://thedata.org

 http://thedata.org}

Mercè Crosas
http:/iq.harvard.edu/merce-crosas
© @mercecrosas

Micah Altman
http://micahaltman.com/
© @drmaltman
THANKS

