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ABSTRACT

We present a study on the impact of molecular outflows in the Perseus molecular cloud complex using the
COMPLETE Survey large-scale '2CO(1-0) and '*CO(1-0) maps. We used three-dimensional isosurface models
generated in right ascension—declination—velocity space to visualize the maps. This rendering of the molecular
line data allowed for a rapid and efficient way to search for molecular outflows over a large (~16 deg?) area. Our
outflow-searching technique detected previously known molecular outflows as well as new candidate outflows.
Most of these new outflow-related high-velocity features lie in regions that have been poorly studied before. These
new outflow candidates more than double the amount of outflow mass, momentum, and kinetic energy in the
Perseus cloud complex. Our results indicate that outflows have significant impact on the environment immediately
surrounding localized regions of active star formation, but lack the energy needed to feed the observed turbulence
in the entire Perseus complex. This implies that other energy sources, in addition to protostellar outflows, are
responsible for turbulence on a global cloud scale in Perseus. We studied the impact of outflows in six regions with
active star formation within Perseus of sizes in the range of 1-4 pc. We find that outflows have enough power to
maintain the turbulence in these regions and enough momentum to disperse and unbind some mass from them. We
found no correlation between outflow strength and star formation efficiency (SFE) for the six different regions we
studied, contrary to results of recent numerical simulations. The low fraction of gas that potentially could be ejected
due to outflows suggests that additional mechanisms other than cloud dispersal by outflows are needed to explain
low SFEs in clusters.

Key words: ISM: clouds — ISM: individual objects (Perseus) — ISM: jets and outflows — ISM: kinematics and
dynamics — stars: formation — turbulence
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in IC 348 (HD 281159) is confirmed to reside in the Perseus
cloud, but there might be a few other high-mass stars that in-
teract with the cloud (through their winds and/or UV radiation)
even though they were not necessarily formed in the cloud com-
plex (see, e.g., Walawender et al. 2004; Ridge et al. 2006a; Kirk
et al. 2006; Rebull et al. 2007). There is also a large number
of nebulous objects associated with outflow shocks (i.e., HH
objects and H, knots) that have been identified in the cloud
complex (Bally et al. 1996b, 1997; Yan et al. 1998; Walawender
et al. 2005b; Davis et al. 2008).

The whole Perseus region was first surveyed in '>?CO by
Sargent (1979), and since then has been mapped in CO at
different angular resolutions (all with beams > 1) by a number
of other authors (e.g., Bachiller & Cernicharo 1986; Ungerechts
& Thaddeus 1987; Padoan et al. 1999; Sun et al. 2006). These
maps show a clear velocity gradient in the Perseus molecular
cloud complex where the central cloud (LSR) velocity increases
from about 4.5 kms~! at the western edge of the cloud to about
10km s~ at the eastern end. The large velocity gradient in the
gas across the entire complex and the fact that different parts
of the Perseus cloud appear to have different distances (see
above) could possibly indicate that the complex is made up
of a superposition of different entities. Recently, the Perseus
molecular cloud complex was also observed (and studied) in
its entirety in the mid- and far-infrared as part of the “From
Molecular Cores to Planet-forming Disks” (aka c2d) Spitzer
Legacy Project (Jgrgensen et al. 2006; Rebull et al. 2007; Evans
et al. 2009).

2. DATA

In this paper, we use the 2C0O(1-0) and 3CO(1-0) data
collected for Perseus as part of the COordinated Molecular
Probe Line Extinction Thermal Emission (COMPLETE) Sur-
vey of Star Forming Regions,® described in detail by Ridge
et al. (2006b). The '2CO and *CO molecular line maps were
observed between 2002 and 2005 using the 14 m Five College
Radio Astronomy Observatory (FCRAO) telescope with the SE-
QUOIA 32-element focal plane array. The receiver was used
with a digital correlator providing a total bandwidth of 25 MHz
over 1024 channels. The '2CO J = 1-0(115.271 GHz) and the
13CO J = 1-0(110.201 GHz) transitions were observed simul-
taneously using an on-the-fly (OTF) mapping technique. The
beam telescope at these frequencies is about 46”. Both maps of
12CO and '3CO are essential for a thorough study of the outflow
and cloud properties. The '>?CO(1-0) is a good tracer of the cool
and massive molecular outflows and provides the information
needed to study the impact of these energetic phenomena on
the cloud. The '*CO(1-0) provides an estimate of the optical
depth of the >?CO(1-0) line and can be used to probe the cloud
structure and kinematics.

Observations were made in 10" x 10" maps with an effective
velocity resolution of 0.07 kms~!. These small maps were then
patched together to form the final large map of Perseus, which
is about 6225 x 3°. Calibration was done via the chopper-wheel
technique (Kutner & Ulich 1981), yielding spectra with units
of T;. We removed noisy pixels that were more than 3 times
the average rms noise of the data cube, the entire map was
then resampled to a 46” grid, and the spectral axis was Hanning
smoothed’ (necessary to keep the cubes to a size manageable by

6 See http://www.cfa.harvard.edu/COMPLETE.
7 See http://www.cfa.harvard.edu/COMPLETE/projects/outflows.html for a
link to the molecular line maps.
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the three-dimensional visualization code, see below). During the
observations of the Perseus cloud, different OFF positions were
used depending on the location that was being mapped. Some
of these OFF positions had faint, though significant, emission
which resulted in an artificial absorption feature in the final
spectra. Gaussians were fitted to the negative feature in regions
with no gas emission, and the fits were then used to correct
for the contaminating spectral component. The resulting mean
30 rms per channel in the '2CO and '*CO maps are 0.25 and
0.20 K, respectively, in the T; scale. Spectra were corrected for
the main beam efficiencies of the telescope (0.49 and 0.45 at
110 and 115 GHz, respectively), obtained from measurements
of Jupiter.

3. COMPUTATIONAL MOTIVATION AND
THREE-DIMENSIONAL VISUALIZATION

This study allows for a test of the effectiveness of three-
dimensional visualization of molecular line data of molecular
clouds in R.A.—decl.—velocity (p—p—v) space as a way to identify
velocity features, such as outflows, in large maps.® The primary
program used for three-dimensional visualization is 3D Slicer”
which was developed originally at the MIT Artificial Intelli-
gence Laboratory and the Surgical Planning Lab at Brigham and
Women’s Hospital. It was designed to help surgeons in image-
guided surgery, to assist in pre-surgical preparation, to be used
as a diagnostic tool, and to help in the field of brain research
and visualization (Gering 1999). The 3D Slicer was first used
with astronomical data by Borkin et al. (2005) to study the hi-
erarchical structure of star-forming cores and velocity structure
of IC 348 with 3CO(1-0) and C'30(1-0) data.

We divided the Perseus cloud into six areas (with similar cloud
central LSR velocities) for easier visualization and outflow
search in 3D Slicer (see below). The borders of these areas
are similar to those named by Pineda et al. (2008), who also
based their division mainly on the cloud’s central LSR velocity.
The regions, whose outlines are shown in Figure 1, overlap
between 1 and 3 arcmin to guarantee complete analysis. This
overlap was checked to be sufficient based on the fact that new
and known outflows which crossed regions were successfully
double-identified.

For each area, an isosurface (constant intensity level) model
was generated in 3D Slicer, using the '2CO(1-0) map. The
threshold emission intensity level chosen for each isosurface
model was the lowest level of emission above the rms noise
level for that particular region. This creates a three-dimensional
model representing all of the detected emission. The high-
velocity gas in this three-dimensional space can be identified
in the form of spikes, as shown for the B5 region in Figure 2,
which visually stick out from the general distribution of the
gas. These sharp protrusions occur since one is looking at the
radial velocity component of the gas along the line of sight,
thus causing spikes wherever there is gas at distinct velocities
far away from the main cloud velocity. Instead of having to go
through each region and carefully examine each channel map, or
randomly scroll through the spectra by hand, this visualization
allows one to instantly see where the high-velocity points are
located (see also Borkin et al. 2007, 2008).

8 This work is done as part of the Astronomical Medicine project
(http://am.iic.harvard.edu) at the Initiative in Innovative Computing at Harvard
(http://iic.harvard.edu). The goal of the project is to address common research
challenges to both the fields of medical imaging and astronomy including
visualization, image analysis, and accessibility of large varying kinds of data.
O http://www.slicer.org/
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Figure 2. Three-dimensional rendering of the molecular gas in B5 (i.e., Area
VI in Figure 1), using 3D Slicer. The gray (green) isosurface model shows the
12CO emission in position—position—velocity space. The small circles show the
locations of identified high-velocity points (with the color in the online version
representing whether the point is blue- or red-shifted).

(A color version of this figure is available in the online journal.)

4. OUTFLOW IDENTIFICATION

A total of 218 high-velocity points were visually identified in
3D Slicer for all of Perseus in '>CO. We checked the position of
each high-velocity point against the locations of known outflows
(based on an extensive literature search) to determine if the point
is associated with any known molecular outflow. From the 218
high-velocity points found, a total of 36 points were identified
as associated with known molecular outflows. Figure 3 shows
the approximate regions where previously known '2CO(1-0)
outflows lie. The number of high-velocity points associated with
a single outflow varies depending on its size and intensity. For
example, the parsec-scale BS IRS1 outflow is a conglomerate of
six high-velocity points whereas the HH 211 outflow, which is
only ~0.1 pc long, is identified by only one point. We inspected
each of the remaining 182 high-velocity points to verify whether
they are outflow related or caused by other velocity features
in the cloud. To determine if a high-velocity point is outflow
related, we checked the spectrum by eye to look for outflow
traits (e.g., high-velocity low-intensity wings) and verified its
proximity to known outflows and outflow sources (Wu et al.
2004), HH objects (Walawender et al. 2005b), H, knots (Davis
et al. 2008), candidate young stellar objects (YSOs) form the
c2d Spitzer survey (Evans et al. 2009) and other known outflow
sources and YSOs. We also checked the velocity distribution
and morphology of the gas associated with each high-velocity
point to verify whether the velocity and structure of the gas
were significantly different from that of the cloud in that region.
From the remaining 182 high-velocity points found, a total of
60 points were classified as being outflow candidates based
on the criteria mentioned above. For 97% of these outflow
candidates, the maximum velocity away from the cloud velocity
is equal to or greater than the escape velocity in that region of the
cloud. We note that we purposely chose not to be too restrictive
in the definition of outflow candidate (e.g., we identified outflow
candidates even without a solid outflow source identification, see
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Figure 3. Spitzer IRAC (color) image of the c2d coverage of the Perseus cloud
made from 3.6, 4.5, and 8.0 ;m images of the region (Evans et al. 2009). The
color code is blue (3.6 um), green (4.5 um), and red (8.0 um). Ellipses and
squares with rounded corners show the approximate regions where previously
known outflows in Perseus lie. The gray contours show the 4 Kkms™! level
of the '3CO(1-0) integrated intensity map (not corrected for the FCRAO beam
efficiency).

(A color version of this figure is available in the online journal.)

below). Using our broad, yet realistic, definition we can calculate
the maximum possible impact from all plausible molecular
outflows to the cloud. Out of the remaining 122 points, 17 points
were discarded due to too much noise or being pixels cut off
by the map’s edge and the other 105 points are thought to be
caused by a number of other kinematic phenomena, including
clouds at other velocities in the same line of sight unrelated to
the Perseus cloud and spherical winds from young stars that
produce expanding shell-like structures in the molecular gas
(as opposed to the discrete blob morphology observed in the
60 outflow candidates). The distribution and impact of these
expanding shells on the cloud will be discussed further in a
subsequent paper (H. G. Arce et al. 2011, in preparation).

We visually inspected the velocity maps in the area surround-
ing each of the 60 high-velocity points identified as outflow in
origin (but unrelated to known outflows) and chose an area (in
R.A.—decl. space) and velocity range that included all or most
of the emission associated with the kinetic feature. The inte-
gration area and velocity ranges were conservatively chosen to
include only the emission visibly associated with the outflow-
ing material, thus avoiding cloud emission. The high-velocity
gas associated with these 60 points shows discrete morpholo-
gies in area and velocity. Hereafter each of these high-velocity
features is referred as a “COMPLETE Perseus Outflow Candi-
date” (CPOC) and we list their positions and other properties in
Table 1.'° In Figure 4, we show the velocity ranges of all CPOCs,
in comparison with their local cloud (LSR) velocity.

Our outflow-detection technique proved to be reliable, as we
detect high-velocity gas associated with all published CO(1-0)
outflows (see Figure 3). However, it is very probable that the
catalog of new molecular outflows generated for this paper is
an underestimate of the true number of previously undetected
molecular outflows due to the resolution of the CO maps and
other limitations of our outflow-detection technique. Unknown
outflows that are smaller than the beam size of our map (i.e.,
0.06 pc at the assumed distance of Perseus) or that have weak
high-velocity wings (i.e., with intensities less than twice the rms
of the spectra at that particular position) cannot be detected by
our technique. Outflows with maximum velocities too close to

10" See http://www.cfa.harvard.edu/COMPLETE/projects/outflows.html for a
link to the fits cubes and the integrated intensity fits files of the CPOCs, as well
as a list of the YSO candidates, HH objects, and H, knots in the cloud.
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in IC 348 (HD 281159) is confirmed to reside in the Perseus
cloud, but there might be a few other high-mass stars that in-
teract with the cloud (through their winds and/or UV radiation)
even though they were not necessarily formed in the cloud com-
plex (see, e.g., Walawender et al. 2004; Ridge et al. 2006a; Kirk
et al. 2006; Rebull et al. 2007). There is also a large number
of nebulous objects associated with outflow shocks (i.e., HH
objects and H, knots) that have been identified in the cloud
complex (Bally et al. 1996b, 1997; Yan et al. 1998; Walawender
et al. 2005b; Davis et al. 2008).

The whole Perseus region was first surveyed in '2CO by
Sargent (1979), and since then has been mapped in CO at
different angular resolutions (all with beams > 1’) by a number
of other authors (e.g., Bachiller & Cernicharo 1986; Ungerechts
& Thaddeus 1987; Padoan et al. 1999; Sun et al. 2006). These
maps show a clear velocity gradient in the Perseus molecular
cloud complex where the central cloud (LSR) velocity increases
from about 4.5 km s~ at the western edge of the cloud to about
10kms~! at the eastern end. The large velocity gradient in the
gas across the entire complex and the fact that different parts
of the Perseus cloud appear to have different distances (see
above) could possibly indicate that the complex is made up
of a superposition of different entities. Recently, the Perseus
molecular cloud complex was also observed (and studied) in
its entirety in the mid- and far-infrared as part of the “From
Molecular Cores to Planet-forming Disks” (aka c2d) Spitzer
Legacy Project (Jgrgensen et al. 2006; Rebull et al. 2007; Evans
et al. 2009).

2. DATA

In this paper, we use the '2CO(1-0) and '*CO(1-0) data
collected for Perseus as part of the COordinated Molecular
Probe Line Extinction Thermal Emission (COMPLETE) Sur-
vey of Star Forming Regions,’ described in detail by Ridge
et al. (2006b). The 2CO and '*CO molecular line maps were
observed between 2002 and 2005 using the 14 m Five College
Radio Astronomy Observatory (FCRAO) telescope with the SE-
QUOIA 32-element focal plane array. The receiver was used
with a digital correlator providing a total bandwidth of 25 MHz
over 1024 channels. The '2CO J = 1-0 (115.271 GHz) and the
13CO J = 1-0(110.201 GHz) transitions were observed simul-
taneously using an on-the-fly (OTF) mapping technique. The
beam telescope at these frequencies is about 46”. Both maps of
12C0 and '3CO are essential for a thorough study of the outflow
and cloud properties. The '2CO(1-0) is a good tracer of the cool
and massive molecular outflows and provides the information
needed to study the impact of these energetic phenomena on
the cloud. The '*CO(1-0) provides an estimate of the optical
depth of the '>?CO(1-0) line and can be used to probe the cloud

is about 6225 x 3°. Calibration was done via the chopper-wheel

techniqug (Kuygner gk Uljph 1284), yieigemg s a Wjgh ungts
of T}. reffove iy pi that gere hanB tirfes
the aver s nfjise thy a cule, the enNe as

then resampled to a 46” grid, and the spectral axis was Hanning
smoothed’ (necessary to keep the cubes to a size manageable by

6 See http://www.cfa.harvard.eds/ COMPLETE.
7 See http://www.cfa.harvard.edu/COMPLETE/projects/outflows.html for a
link to the molecular line maps.
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the three-dimensional visualization code, see below). During the
observations of the Perseus cloud, different OFF positions were
used depending on the location that was being mapped. Some
of these OFF positions had faint, though significant, emission
which resulted in an artificial absorption feature in the final
spectra. Gaussians were fitted to the negative feature in regions
with no gas emission, and the fits were then used to correct
for the contaminating spectral component. The resulting mean
30 ms per channel in the '>CO and '*CO maps are 0.25 and
0.20 K, respectively, in the T scale. Spectra were corrected for
the main beam efficiencies of the telescope (0.49 and 0.45 at
110 and 115 GHz, respectively), obtained from measurements
of Jupiter.

3. COMPUTATIONAL MOTIVATION AND
THREE-DIMENSIONAL VISUALIZATION

This study allows for a test of the effectiveness of three-
dimensional visualization of molecular line data of molecular
clouds in R.A.—decl.—velocity (p—p—v) space as a way to identify
velocity features, such as outflows, in large maps.® The primary
program used for three-dimensional visualization is 3D Slicer”
which was developed originally at the MIT Aurtificial Intelli-
gence Laboratory and the Surgical Planning Lab at Brigham and
Women’s Hospital. It was designed to help surgeons in image-
guided surgery, to assist in pre-surgical preparation, to be used
as a diagnostic tool, and to help in the field of brain research
and visualization (Gering 1999). The 3D Slicer was first used
with astronomical data by Borkin et al. (2005) to study the hi-
erarchical structure of star-forming cores and velocity structure
of IC 348 with *CO(1-0) and C'*0(1-0) data.

We divided the Perseus cloud into six areas (with similar cloud
central LSR velocities) for easier visualization and outflow
search in 3D Slicer (see below). The borders of these areas
are similar to those named by Pineda et al. (2008), who also
based their division mainly on the cloud’s central LSR velocity.
The regions, whose outlines are shown in Figure 1, overlap
between 1 and 3 arcmin to guarantee complete analysis. This
overlap was checked to be sufficient based on the fact that new
and known outflows which crossed regions were successfully
double-identified.

For each area, an isosurface (constant intensity level) model
was generated in 3D Slicer, using the '>CO(1-0) map. The
threshold emission intensity level chosen for each isosurface
model was the lowest level of emission above the rms noise
level for that particular region. This creates a three-dimensional
model representing all of the detected emission. The high-
velocity gas in this three-dimensional space can be identified
in the form of spikes, as shown for the B5 region in Figure 2,
which visually stick out from the general distribution of the

as._ These sharp protrusions occur since one is looking at the
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A away
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8 This work is done as part of the Astronomical Medicine project
(http://am.iic.harvard.edu) at the Initiative in Innovative Computing at Harvard
(http://iic.harvard.edu). The goal of the project is to address common research
challenges to both the fields of medical imaging and astronomy including
visualization, image analysis, and accessibility of large varying kinds of data.
°  http://www.slicer.org/
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at redshifted velocities. CPOC 47 is located just to the north
of IC 348 where there are a number c2d YSO candidates, and
this candidate outflow is most probably associated with one of
these sources rather than any of the sources in BS. CPOC 52 is a
blob with relatively high-velocity blueshifted gas, significantly
different from ambient cloud velocities (see Figure 4). CPOCs
53 and 54 have redshifted velocities and may be associated
with HH 844 and IRAS 03439+3233 (also known as B5-IRS3).
CPOC 57 is redshifted and is located about 10’ northeast of B5-
IRS4, while CPOC 58 is located south of the blueshifted lobe
of B5-IRS1 and it is not clear to which young star in the region
it is associated with. CPOC 60 is located at the eastern edge of
our map. We classify it as a candidate outflow because of its
morphology and velocity structure.
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in IC 348 (HD 281159) is confirmed to reside in the Perseus
cloud, but there might be a few other high-mass stars that in-
teract with the cloud (through their winds and/or UV radiation)
even though they were not necessarily formed in the cloud com-
plex (see, e.g., Walawender et al. 2004; Ridge et al. 2006a; Kirk
et al. 2006; Rebull et al. 2007). There is also a large number
of nebulous objects associated with outflow shocks (i.e., HH
objects and Hj, knots) that have been identified in the cloud
complex (Bally et al. 1996b, 1997; Yan et al. 1998; Walawender
et al. 2005b; Davis et al. 2008).

The whole Perseus region was first surveyed in '>CO by
Sargent (1979), and since then has been mapped in CO at
different angular resolutions (all with beams > 1) by a number
of other authors (e.g., Bachiller & Cernicharo 1986; Ungerechts
& Thaddeus 1987; Padoan et al. 1999; Sun et al. 2006). These
maps show a clear velocity gradient in the Perseus molecular
cloud complex where the central cloud (LSR) velocity increases
from about 4.5kms~! at the western edge of the cloud to about
10kms~! at the eastern end. The large velocity gradient in the
gas across the entire complex and the fact that different parts
of the Perseus cloud appear to have different distances (see
above) could possibly indicate that the complex is made up
of a superposition of different entities. Recently, the Perseus
molecular cloud complex was also observed (and studied) in
its entirety in the mid- and far-infrared as part of the “From
Molecular Cores to Planet-forming Disks” (aka c2d) Spitzer
Legacy Project (Jgrgensen et al. 2006; Rebull et al. 2007; Evans
et al. 2009).

2. DATA

In this paper, we use the >CO(1-0) and 3CO(1-0) data
collected for Perseus as part of the COordinated Molecular
Probe Line Extinction Thermal Emission (COMPLETE) Sur-
vey of Star Forming Regions,® described in detail by Ridge
et al. (2006b). The >CO and *CO molecular line maps were
observed between 2002 and 2005 using the 14 m Five College
Radio Astronomy Observatory (FCRAO) telescope with the SE-
QUOIA 32-element focal plane array. The receiver was used
with a digital correlator providing a total bandwidth of 25 MHz
over 1024 channels. The '>CO J = 1-0 (115.271 GHz) and the
13CO J = 1-0(110.201 GHz) transitions were observed simul-
taneously using an on-the-fly (OTF) mapping technique. The
beam telescope at these frequencies is about 46”. Both maps of
12CO and 3CO are essential for a thorough study of the outflow
and cloud properties. The >?CO(1-0) is a good tracer of the cool
and massive molecular outflows and provides the information
needed to study the impact of these energetic phenomena on
the cloud. The '3CO(1-0) provides an estimate of the optical
depth of the >CO(1-0) line and can be used to probe the cloud
structure and kinematics.

Observations were made in 10" x 10’ maps with an effective
velocity resolution of 0.07 km s~!. These small maps were then
patched together to form the final large map of Perseus, which
is about 6225 x 3°. Calibration was done via the chopper-wheel
technique (Kutner & Ulich 1981), yielding spectra with units
of T;. We removed noisy pixels that were more than 3 times
the average rms noise of the data cube, the entire map was
then resampled to a 46” grid, and the spectral axis was Hanning
smoothed” (necessary to keep the cubes to a size manageable by

6 See http://www.cfa.harvard.edu/COMPLETE.
7 See http://www.cfa.harvard.edu/COMPLETE/projects/outflows.html for a
link to the molecular line maps.
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the three-dimensional visualization code, see below). During the
observations of the Perseus cloud, different OFF positions were
used depending on the location that was being mapped. Some
of these OFF positions had faint, though significant, emission
which resulted in an artificial absorption feature in the final
spectra. Gaussians were fitted to the negative feature in regions
with no gas emission, and the fits were then used to correct
for the contaminating spectral component. The resulting mean
3¢ rms per channel in the '>CO and '3CO maps are 0.25 and
0.20 K, respectively, in the T} scale. Spectra were corrected for
the main beam efficiencies of the telescope (0.49 and 0.45 at
110 and 115 GHz, respectively), obtained from measurements
of Jupiter.

3. COMPUTATIONAL MOTIVATION AND
THREE-DIMENSIONAL VISUALIZATION

This study allows for a test of the effectlveness 0
dimensional visualization of
clouds in R.A.—decl.—velocity (p=p=
velocity features, such as outflows, in large maps § The
program used for three-dimensional visualization is 3D Slicer’
which was developed originally at the MIT Artificial Intelli-
gence Laboratory and the Surgical Planning Lab at Brigham and
Women’s Hospital. It was designed to help surgeons in image-
guided surgery, to assist in pre-surgical preparation, to be used
as a diagnostic tool, and to help in the field of brain research
and visualization (Gering 1999). The 3D Slicer was first used
with astronomical data by Borkin et al. (2005) to study the hi-
erarchical structure of star-forming cores and velocity structure
of IC 348 with 3CO(1-0) and C'80(1-0) data.

We divided the Perseus cloud into six areas (with similar cloud
central LSR velocities) for easier visualization and outflow
search in 3D Slicer (see below). The borders of these areas
are similar to those named by Pineda et al. (2008), who also
based their division mainly on the cloud’s central LSR velocity.
The regions, whose outlines are shown in Figure 1, overlap
between 1 and 3 arcmin to guarantee complete analysis. This
overlap was checked to be sufficient based on the fact that new
and known outflows which crossed regions were successfully
double-identified.

For each area, an isosurface (constant intensity level) model
was generated in 3D Slicer, using the '>CO(1-0) map. The
threshold emission intensity level chosen for each isosurface
model was the lowest level of emission above the rms noise
level for that particular region. This creates a three-dimensional
model representing all of the detected emission. The high-
velocity gas in this three-dimensional space can be identified
in the form of spikes, as shown for the B5 region in Figure 2,
which visually stick out from the general distribution of the
gas. These sharp protrusions occur since one is looking at the
radial velocity component of the gas along the line of sight,
thus causing spikes wherever there is gas at distinct velocities
far away from the main cloud velocity. Instead of having to go
through each region and carefully examine each channel map, or
randomly scroll through the spectra by hand, this visualization
allows one to instantly see where the high-velocity points are
located (see also Borkin et al. 2007, 2008).

8 This work is done as part of the Astronomical Medicine project
(http://am.iic.harvard.edu) at the Initiative in Innovative Computing at Harvard
(http://iic.harvard.edu). The goal of the project is to address common research
challenges to both the fields of medical imaging and astronomy including
visualization, image analysis, and accessibility of large varying kinds of data.
9 http://www.slicer.org/
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at redshifted velocities. CPOC 47 is located just to the north
of IC 348 where there are a number c2d YSO candidates, and
this candidate outflow is most probably associated with one of
these sources rather than any of the sources in B5. CPOC 52 is a
blob with relatively high-velocity blueshifted gas, significantly
different from ambient cloud velocities (see Figure 4). CPOCs
53 and 54 have redshifted velocities and may be associated
with HH 844 and IRAS 03439+3233 (also known as B5-IRS3).
CPOC 57 is redshifted and is located about 10’ northeast of B5-
IRS4, while CPOC 58 is located south of the blueshifted lobe
of B5-IRS1 and it is not clear to which young star in the region
it is associated with. CPOC 60 is located at the eastern edge of
our map. We classify it as a candidate outflow because of its
morphology and velocity structure.
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ADDITIONAL PRINCIPLES

At minimum, all data necessary to understand, assess,
extend conclusions in scholarly work should be cited.

» Citations should persist and enable access to fixed version
of data at least as long as the citing work exists.

* Data citation should support unambiguous attribution of
credit to all contributors
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