
Introduction to Dataverse APIs

Gustavo Durand, IQSS, Harvard University
Jim Myers, GDCC

Gustavo Durand
Technical Lead and Architect
of Dataverse

Jim Myers
GDCC Senior Developer,
Architect

2

Agenda

● What and Why of APIs
● Modularity in Dataverse
● Using APIs
● Tools that Use APIs

○ Tools for Adding Many/Large Files to Dataverse
● Frontend Rearchitecture

What and Why of APIs

What is an API?

API stands for “Application Programming Interface”

Why APIs?

● Enable modularity in the design, development, and

deployment of Dataverse, to support multiple types of

data, users, and workflows

● Allow programmatic access for bulk access

● Allow interoperability with “external tools” and other

repositories / software

Modularity in Dataverse

In order for institutions to use the Dataverse software with different
workflows, different domains, and different organizational models, we
needed to allow flexibility in the way to configure key aspects of the software.

Additionally, we designed the Dataverse software itself to focus on the core
functionality for a data repository, namely publishing, versioning, sharing, and
citing, while allowing easy interoperability with other tools for exploration
and visualization.

Modularity within Dataverse

External Systems
(via APIs)

Plugins
(via SPIs)

Configuration
(via DB)

Customization
(via Javascript)

Dataverse allows admins to customize their installations

with HTML/Javascript in a few areas.

Customization (via Javascript)

External Systems
(via APIs)

Plugins
(via SPIs)

Configuration
(via DB)

Customization
(via Javascript)

Several areas of functionality are defined by configuration

via the database, rather than in the code itself, allowing the

same code to be deployed by different institutions with

different needs.

Configuration (via DB)

External Systems
(via APIs)

Plugins
(via SPIs)

Configuration
(via DB)

Customization
(via Javascript)

Plugins allow developers to extend the functionality of the

core code without having to make a separate fork of the

repository. In Dataverse, we enable this via the SPI (Service

Provider Interface) model.

Plugins (via SPIs)

External Systems
(via APIs)

Plugins
(via SPIs)

Configuration
(via DB)

Customization
(via Javascript)

From Dataverse 4 onward, APIs have been a major focus of the software and a
majority of the functionality that is available via the UI is also available via API.

This allows external developers to develop other applications, which we often
refer to as external tools, using whatever technology is most effective for their
purpose.

External Systems (via APIs)

External Systems
(via APIs)

Plugins
(via SPIs)

Configuration
(via DB)

Customization
(via Javascript)

Using APIs

https://guides.dataverse.org/en/latest/api

API Guide

● From a command line, use: cURL
○ stands for client URL

○ a command line tool that developers use to transfer

data to and from a server

○ response will (usually) be in json format

○ case insensitive, so in the examples you will typically

just see curl

How to Access APIs

curl -H "X-Dataverse-key:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx" -X POST
"https://demo.dataverse.org/api/dataverses/argentina/datasets" --upload-file messi-10.json

-H 'Content-type:application/json'

Components of a API call

curl -H "X-Dataverse-key:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx" -X POST

"https://demo.dataverse.org/api/dataverses/argentina/datasets" --upload-file messi-10.json
-H 'Content-type:application/json'

Components of a API call

● Endpoint
○ the Dataverse server you’re contacting
○ for our examples, we’ll be using: https://demo.dataverse.org

curl -H "X-Dataverse-key:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx" -X POST
"https://demo.dataverse.org/api/dataverses/argentina/datasets" --upload-file messi-10.json

-H 'Content-type:application/json'

Components of a API call

● An HTTP method
○ GET (default) is used to retrieve information or a resource from a server
○ POST is used to sends data to the server and creates a new resource
○ PUT is most often used to update an existing resource
○ DELETE is used to delete a resource

curl -H "X-Dataverse-key:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx" -X POST

"https://demo.dataverse.org/api/dataverses/argentina/datasets" --upload-file messi-10.json
-H 'Content-type:application/json'

Components of a API call

● Body
○ contains the data that we want to send
○ Generally, used with POST AND PUT

curl -H "X-Dataverse-key:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx" -X POST
"https://demo.dataverse.org/api/dataverses/argentina/datasets" --upload-file messi-10.json

-H 'Content-type:application/json'

Components of a API call

● Additional Headers
○ These contain metadata about the request
○ Examples:

■ API token
■ Content type of body

● APIs which anyone can access
○ Basic info about the installation (e.g. server, version)

curl "https://demo.dataverse.org/api/info/version"

○ Some Settings
■ Example: Custom Popup Text for Publishing Datasets
■ Example: Maximum Embargo Duration In Months

curl "https://demo.dataverse.org/api/info/settings/:DatasetPublishPopupCustomText"
curl "https://demo.dataverse.org/api/info/settings/:MaxEmbargoDurationInMonths"

○ Other Configuration Info
■ Metadata Blocks
■ Info About Single Metadata Block

curl "https://demo.dataverse.org/api/metadatablocks"
curl "https://demo.dataverse.org/api/metadatablocks/citation"

Public APIs

https://demo.dataverse.org/api/info/version
https://demo.dataverse.org/api/info/settings/:DatasetPublishPopupCustomText
https://demo.dataverse.org/api/info/settings/:MaxEmbargoDurationInMonths
https://demo.dataverse.org/api/metadatablocks
https://demo.dataverse.org/api/metadatablocks/citation

curl "https://demo.dataverse.org/api/metadatablocks"

Sample Response (raw)

curl "https://demo.dataverse.org/api/metadatablocks" |jq

Sample Response (with “jq”)

https://demo.dataverse.org/api/metadatablocks

● Many APIs are not fully public; you will need a API Token
● An API token is similar to a password and allows you to authenticate to

Dataverse Software APIs to perform actions as you
● Your API token is unique to the server you are using

API Token

● The Search API supports the same searching operations

as UI

● Required Parameter “q” - the query

curl https://demo.dataverse.org/api/search?q=messi

Search APIs

https://demo.dataverse.org/api/search?q=messi

● Full set of optional parameters for sorting, faceting, highlighting, and other
operations
○ Example (narrowed to Show Relevance and Facets):

curl
https://demo.dataverse.org/api/search?q=messi&show_relevance=true&show_facets=true&
fq=publicationDate:2022

● To also search unpublished content, you must pass in an API token
○ Example (Narrowed to only datasets within a specific collection):

curl -H X-Dataverse-key:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
https://demo.dataverse.org/api/search?q=messi&type=dataset&subtree=argentina

Search APIs

https://demo.dataverse.org/api/search?q=messi&show_relevance=true&show_facets=true&fq=publicationDate:2022
https://demo.dataverse.org/api/search?q=messi&show_relevance=true&show_facets=true&fq=publicationDate:2022
https://demo.dataverse.org/api/search?q=messi&fq=publicationDate:2022&type=dataset&subtree=argentina

● Basic access URI: /api/access/datafile/$id

● Download a single file (Note: use “-L” header to follow redirects):

curl -L https://demo.dataverse.org/api/access/datafile/10

● Download just a range of that file:

curl -H "Range:bytes=0-9" https://demo.dataverse.org/api/access/datafile/10

● Download multiple files at once (as a .zip file):

curl -L https://demo.dataverse.org/api/access/datafiles/10,11,12 --output arg.zip

● Download all files from a dataset (as a .zip file):

curl -L -O -J -H X-Dataverse-key:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
https://demo.dataverse.org/api/access/dataset/:persistentId/?persistentId=doi:10.70122/FK2/N
2XGBJ

Access APIs

https://demo.dataverse.org/api/access/datafile/10
https://demo.dataverse.org/api/access/datafile/10
https://demo.dataverse.org/api/access/datafiles/10
https://demo.dataverse.org/api/access/dataset/:persistentId/?persistentId=doi:10.70122/FK2/N2XGBJ
https://demo.dataverse.org/api/access/dataset/:persistentId/?persistentId=doi:10.70122/FK2/N2XGBJ

● Create a Dataverse Collection

curl -H "X-Dataverse-key:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx" -X POST

"https://demo.dataverse.org/api/dataverses/argentina" --upload-file

dataverse-argentina.json

● Deposit a Dataset

curl -H "X-Dataverse-key:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx" -X POST

"https://demo.dataverse.org/api/dataverses/argentina/datasets" --upload-file

messi-10.json -H 'Content-type:application/json'

Deposit APIs

Dataverse Collection sample json
{
 "name": "Argentina Dataverse Collection" ,
 "alias": "argentina",
 "dataverseContacts": [
 {
 "contactEmail": "scaloni@argentina.org"
 },
 {
 "contactEmail": "messi@argentina.org"
 }
],
 "affiliation": "Argentina",
 "description": "Argentina National Team Research." ,
 "dataverseType": "ORGANIZATIONS_INSTITUTIONS"
}

Dataset sample json
{
 "datasetVersion": {
 "license": {
 "name": "CC0 1.0",
 "uri": "http://creativecommons.org/publicdomain/zero/1.0"
 },
 "metadataBlocks": {
 "citation": {
 "fields": [
 {
 "value": "Messi",
 "typeClass": "primitive",
 "multiple": false,
 "typeName": "title"
 },
 {
 "value": [
 {
 "authorName": {
 "value": "Messi, Lionel" ,
 "typeClass": "primitive",
 "multiple": false,
 "typeName": "authorName"
 }, ...

● APIs for administering your dataverse collections and datasets
● Examples:

○ List Role Assignments in a Dataset

curl -H "X-Dataverse-key:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"
"https://demo.dataverse.org/api/datasets/2347/assignments"

○ Delete a Dataverse Collection

curl -H "X-Dataverse-key:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx" -X DELETE
"https://demo.dataverse.org/api/dataverses/brasil"

Administration APIs (user)

● APIs for some advanced configurations or user management
● Examples:

○ Configure a Dataset to Store All New Files in a Specific File
Store

curl -H "X-Dataverse-key: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx" -X PUT -d largeBucket
"https://demo.dataverse.org/api/datasets/1022/storageDriver"

○ Change User Identifier

curl -H "X-Dataverse-key: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx" -X POST
"https://demo.dataverse.org/api/users/messi/changeIdentifier/lionelmessi"

Administration APIs (superuser)

https://demo.dataverse.org/api/datasets/1022/storageDriver
https://demo.dataverse.org/api/users/messi/changeIdentifier/lionelmessi

● Only available with direct access to server
● Don’t require API token (actions are not “user” actions)
● Examples:

○ Reindex a dataset
curl http://localhost:8080/api/admin/index/dataverses/10

○ Delete cached metrics results
curl - X DELETE http://localhost:8080/api/admin/clearMetricsCache

Administration APIs (installation admin)

http://localhost:8080/api/admin/index/dataverses/10
http://localhost:8080/api/admin/clearMetricsCache

● Migration APIs
○ Native Migration APIs for json and ddi imports
○ Sword API

■ “Simple Web-service Offering Repository Deposit”
■ interoperability standard created in 2007

● Metric APIs
○ The Metrics API provides counts of downloads, datasets created, files

uploaded, and more
○ Used to power https://dataverse.org/metrics

● Harvesting APIs
○ Dataverse expose structured metadata via OAI-PMH

■ OAI-PMH is a set of six verbs or services that are invoked within HTTP
■ Dataverse can harvest remote datasets from other installations or other

repositories that support OAI-PMH

Other APIs

● Several client libraries have been created to help developers interact with
Dataverse APIs from other languages, including:
○ C/C++
○ Go
○ Java
○ Javascript
○ Julia
○ PHP
○ Python
○ R
○ Ruby

Client Libraries

https://guides.dataverse.org/en/latest/api

API Guide (Native API contents)

Tools that use APIs

● Tools that talk to Dataverse
○ generally used to deposit data into Dataverse (via Deposit API)
○ usually don’t require anything special to be set up in the Dataverse repository

● Tools that Dataverse talks to
○ user starts on Dataverse and is directed to the external tool

■ require manifest files
○ have predefined areas in the UI where these would plug into (Explore tools)
○ OR, are embedded into the Dataverse UI directly (Preview tools and Query Tools)

● Tools that do both
○ user starts on Dataverse and is directed to the external tool

■ require manifest files
○ also have predefined areas in the UI where these would plug into (Configure tools)
○ will also send something back to Dataverse, so need an API token that has “write”

privileges

External Tools

● External tools must be

expressed in an

external tool manifest

file

● Can be uploaded to a

Dataverse installation

via API

External Tools Manifest

● A set of tools that display the content of
files, allowing them to be viewed without
downloading the file, including

● audio
● html
● Hypothes.is annotations
● images
● PDF
● text
● video
● tabular data
● spreadsheets
● GeoJSON
● Zip files
● NcML files
● Previewers are available through the

preview (eye) icon on Dataset pages
● And also embedded as a tab on Datafile

pages

File Previewers

File Previewers (more examples)

● A previewer that will
show you the internal
content and structure of
a zip file (or electronic
lab notebook)

● Uses the Range
functionality in our
Access api; so it’s not just
a viewer, it’s an individual
file unpacker and
downloader too

Zip File Previewer +

● File level explore tools
provide a variety of features
from data visualization to
statistical analysis

● File level query tools allow
the user to ask questions (e.g.
natural language queries) of a
data table’s contents without
having to download the file

● File level configure tools
allow (authorized) users to
send metadata about the file
back to Dataverse

File Exploration, Configuration, and Query Tools

● Dataset level explore tools allow the user to
explore all the files in a dataset - common use
case is reproducibility

○ WholeTale - creates reproducible research
packages based on popular tools such as Jupyter
and RStudio

○ Binder - spins up custom computing environments
in the cloud (including Jupyter notebooks)

● Dataset level configure tools allow
(authorized) users to send metadata about
the dataset back to Dataverse

○ Turbo Curator (coming soon) - uses Open AI’s
ChatGPT & ICPSR best practices to provides
recommendation to enhance metadata & generate
meaningful titles, descriptions, and keywords

Dataset External Tools

Tools for Adding Many/Large
Files to Dataverse

Use Cases Where Other Tools Are Useful
● You have many (100+) files to upload

● You have large files that may take hours to upload

● You have files in many subdirectories / want files to have paths in
Dataverse

● You want to sync a local directory tree with a dataset / upload only
new files

● You want to include or exclude files with a given name pattern

● You want to automate file transfer

● You don’t have a browser where the files are

Available Tools

● DVWebLoader
○ Easiest, configured as an option in the Dataverse UI

● Python DVUploader
○ Simple command-line tool/library

● DVUploader
○ Most comprehensive, but ugliest - a reference implementation exercising the

Dataverse API

Note:

All these tools are most-efficient when Dataverse has been configured to use S3 storage and
direct uploads. Some only support this case.

All use the documented Dataverse API

https://github.com/gdcc/dvwebloader
https://github.com/gdcc/python-dvuploader
https://github.com/GlobalDataverseCommunityConsortium/dataverse-uploader

DVWebloader
● Click “Upload a Folder”

● Select Directory

● Agree to pop-up

● Adjust upload list

● Click “Start Upload”

● Return to Dataverse
when complete

* Must be configured at your
installation

https://docs.google.com/file/d/1-Q3uf4J-kVPEylnMFHFmscWYDyBLaSC5/preview

Python DVUploader
Command-line or as a library

● File list:

dvuploader my_file.txt my_other_file.txt \
 --pid doi:10.70122/XXX/XXXXX \
 --api-token
XXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX \

 --dataverse-url
https://demo.dataverse.org/

● Config file - with added metadata

dvuploader --config-path config.yml

● filepath: Path to the file to upload.

● directoryLabel: Optional directory label

● description: Optional description of the file.

● mimetype: Mimetype of the file.

● categories: Optional list of categories

● restrict: whether to restrict access or not

https://docs.google.com/file/d/1OcMFHm8MpmwudqjKo-pfDmz0PdVkhfjD/preview

DVUploader
Java Command-line tool
● Requires Java and downloading the

DVUploader jar file

java -jar DVUploader-v1.2.0beta3.jar -key=<api
key> -did=<dataset doi> -server=<server URL>
<dir or file names>

● Options
● -listonly
● -limit=<X>
● -ex=<regexp>
● -verify
● -recurse
● -maxlockwait=<X>

Detailed logging

Also supports re-creating datasets from
RDA-conformant archival Bags

Dataverse Mode: Uploading files to a Dataverse instance
Using apiKey: 8599b802-659e-49ef-823c-20abd8efc05c
Adding content to: doi:10.5072/FK2/TUNNVE Using server:
https://dataverse.tdl.org Request to upload: testdir

PROCESSING(C): testdir Found as: doi:10.5072/FK2/TUNNVE

PROCESSING(D): testdir\Capture3.JPG Does not yet exist
on server. UPLOADED as:
MD5:b2d8726f4ddba30705259143dbb283e3 CURRENT TOTAL: 1
files :9506 bytes

PROCESSING(D): testdir\Capture4.GIF Does not yet exist
on server. UPLOADED as:
MD5:3b9b536bd0abaf9c2677846f62d77ed9 CURRENT TOTAL: 2
files :23973 bytes

PROCESSING(D): testdir\Capture5.PNG Does not yet exist
on server. UPLOADED as:
MD5:ce26585c19bd1470b7229b2cfcc879f0 CURRENT TOTAL: 3
files :35448 bytes

● -uploadviaserver
● -trustall
● -singlefile
● -skip=<X>
● -forcenew

The Dataverse Direct Upload API

● Request a signed URL(s) from Dataverse for a given file (more than one
URL if multipart upload is required)

● Perform the upload(s) to the S3 store
○ For multipart, make the api call to abort/complete it

● Call Dataverse to add the file, providing the name, description, hash
value, directoryLabel, etc.
○ Optionally tell Dataverse to add many files at once

○ Optionally tell Dataverse to replace an existing file with the new one

https://guides.dataverse.org/en/latest/developers/s3-direct-upload-api.html#direct-datafile-upload-replace-api

Notes
● Handling larger files/more files requires Dataverse to be

configured and resourced appropriately - if you are pushing
boundaries, expect to coordinate with the Dataverse admins
(TLDR: don’t upload TBs w/o asking!)

● Don’t run multiple copies
○ All of these tools decide what to upload based on the current dataset

contents
○ They already parallelize uploads

● If you have really, really big data, consider Globus and/or
referencing data at remote sites (requires additional setup at
the installation)

Acknowledgements

DVuploader has been supported by SEAD, QDR, GDCC, RDA

DVWebloader was initiated by DataverseNO

Python DVUploader was initiated by Jan Range

All are open source, available on github, and welcome contributions from
anyone in the Dataverse community

Frontend Rearchitecture

● Separate frontend and backend applications
○ API-first Dataverse backend
○ Single Page Application (SPA) front end

● Benefits
○ modernize the frontend technologies
○ speed up development of new UI/UX ideas
○ empower the community
○ extend modularity

● 100% of functionality available via API
● Initial beta release planned for Q2 2024

Frontend Rearchitecture Project

Thank you

https://dataverse.org
https://github.com/iqss/dataverse

Dataverse Community Meeting 2024
March 4-8, 2024

CIMMYT in Texcoco, Mexico

https://dataverse.org
https://github.com/iqss/dataverse

