
Modularity and
Interoperability in Generalist

Data Repositories
Gustavo Durand
Stefano M. Iacus

Introduction to Dataverse

Gustavo Durand
Tech Lead / Architect of the Dataverse Project
IQSS, Harvard University

● An open-source platform to publish, cite, and archive
research data

● Built to support multiple types of data, users, and workflows
● Developed at Harvard’s Institute for Quantitative Social

Science (IQSS) since 2006
● Development funded by IQSS and with grants, in

collaboration with institutions around the world
● Core team

○ @ IQSS - developers, designers, UX/UI, metadata
specialists, curation team, leadership team

○ key contributors from the community

Overview

Dataverse Features

https://dataverse.org/software-features

● Main goal of core code is to focus on publishing (citing,

sharing, versioning, etc.), FAIR Data principles

● Robust APIs to allow interoperability with “external

tools” and other repositories / software

Dataverse Community

Dataverse Community

● 165+ Github Contributors

● Hundreds of members of the Dataverse Community -

developers, researchers, librarians, data scientists
○ Workshops & Trainings

○ UX/UI Testing & Interviews

○ Global Dataverse Community Consortium

○ Dataverse Google Group / Matrix / Community Slack

○ Dataverse Community Calls

○ Dataverse Community Meeting

● (self reporting) installations around the world

Dataverse Community

Modularity in Dataverse

External Systems
(via APIs)

Plugins
(via SPIs)

Configuration
(via DB)

Dataverse Ecosystem

Customization
(via Javascript)

Customization (via Javascript)

Dataverse allows admins to customize their installations

with HTML/Javascript in a few areas.

Customization (via Javascript)

● Branding
○ Dataverse provides configurable options for easy-to-add (and maintain)

custom branding for your Dataverse installation via a custom home page,
header, footer and / or style sheet

● External Vocabulary Support
○ Dataverse supports the integration of browser-based scripts that can alter

the metadata entry and display user interfaces on a per metadata field basis
■ ORCID, e.g. author name field
■ CrossRef FundReg, e.g. Funding Info, Agency field
■ ROR, e.g. author affiliation field
■ Skomos - many vocabularies, e.g. keyword field

Customization (via Javascript)

https://docs.google.com/document/d/17XfX83z23UkUy2v0S0cmHdShjvgB8Q9t5OtcNStZaAI/edit?usp=sharing

Configuration (via DB)

Several areas of functionality are defined by

configuration via the database, rather than in the code

itself, allowing the same code to be deployed by different

institutions with different needs.

Configuration (via DB)

● Custom Metadata definitions
○ All metadata fields are defined outside of the code itself (currently in .tsv files) that describe the

different attributes for that field.
○ These files, in turn, can be imported in via API and the DatasetfieldType definitions are stored in

the database
● Roles

○ A role consists of a set of permissions that a user is allowed to perform
○ these sets of permissions are stored in the database (defined in external json files).

● Authentication Providers
○ Dataverse supports configuration of authentication providers via the api, with the configuration

stored in the database
● Import

○ the base Dublin Core format, is implemented as a prototype of an expandable, programmatic
model

○ instead of coding an XML format parser, a mapping of the external format fields to the internal
Dataverse metadata structure can be defined in the database

○ A better model for import would be the Plugin model

Configuration (via DB)

Plugins (via SPIs)

Plugins allow developers to extend the functionality of the core code
without having to make a separate fork of the repository. In Dataverse, we
enable this via the SPI (Service Provider Interface) model.

Plugins (via SPIs)

● Increasingly modular variations of SPI
○ Dynamic loading

○ Dynamic loading from an external jar

○ Creating an Interface Library

○ Supporting separate execution

Plugins (via SPIs)

● Export
○ Metadata exporters take information provided by Dataverse about the contents of a Dataset, i.e. its metadata and

list of included files and their metadata, and generate a file conforming to a specific community metadata format
including all of that information or the subset that matches the format

○ V5.14 - can be built using dataverse-spi jar and deployed by dropping into a specified directory on the Dataverse
server

● PID Provider
○ Dataverse currently supports the use of third-part PIDs as the way to persistently identify datasets and,

optionally, individual files
● Workflow Steps

○ Actions that can be chained together and run via API/publication triggers (next section)
○ Some existing steps can call remote services

● Archival Bag Creation
○ Dataverse has an extensible mechanism to capture the full metadata and data contents of a published dataset

version into an archival zipped BagIt Bag following the Research Data Alliance recommendations for Bag
structure and contents

● Data Stores
○ New ways to store data files (e.g. local files, S3, Swift, Globus, Remote, …)

Plugins (via SPIs)

External Systems (via APIs)

From Dataverse 4 onward, APIs have been a major focus

of the software and a majority of the functionality that is

available via the UI is also available via API.

This allows external developers to develop other

applications, which we often refer to as external tools,

using whatever technology is most effective for their

purpose.

External Systems (via APIs)

● Several client libraries have been created to help

developers interact with Dataverse APIs from other

languages, including:

○ Python

○ R

○ Javascript

Client Libraries

● Tools that talk to Dataverse

○ generally, used to deposit data into Dataverse (via Deposit API)

○ usually don’t require anything special to be set up in the Dataverse repository

● Tools that Dataverse talks to

○ user starts on Dataverse and is directed to the external tool

○ have predefined areas in the UI where these would plug into (Explore tools)

■ require manifest files

● Tools that do both

○ user starts on Dataverse and is directed to the external tool

○ also have predefined areas in the UI where these would plug into (Configure tools)

■ require manifest files

○ will also send something back to Dataverse, so need an API token that has “write”

privileges

External Tools

● The Dataverse Software can also perform two sequences
of actions when datasets are published
○ PrePublishDataset trigger

■ useful for having an external system prepare a
dataset for being publicly accessed or to start an
approval process.

○ PostPublishDataset trigger
■ might be used for sending notifications about the

newly published dataset.

External Workflows

 A couple of concrete cases
Stefano M. Iacus
Managing Director Dataverse Project
IQSS, Harvard University

Really big data with Globus
(“external tool” plugin)

Really big data support in Dataverse
(overview from 2022)

GB TB PB

Upload through Dataverse

Direct upload/download to S3

Globus Transfer to S3

Reference Data in Remote Stores Sensitive

Previous Globus Work (v5.12)
Use of the Globus S3 connector to allow transfer of data to/from Dataverse via
Globus

● Dataverse configured with S3 store
● Uses external JavaScript Dataverse-Globus transfer app

Remote Overlay store to reference remote data via URL

Originally created by Borealis group, updated/merged in v5.12 with support from Harvard Data Commons

Mostly Jim Mayer’s contribution

Limitations
● Added cost for connector

● Doesn’t handle restriction/embargoes

● Not well suited to parallel transfer to tape storage
○ Requires parallel S3 endpoints
○ Assumes direct and immediate access via S3

● Can’t reference remote (too large to transfer) files directly using
Globus (only URL)

Updated Design
● Build upon the RemoteOverlay store design to reference files on

Globus endpoints, including file/tape endpoints
○ Allow referencing a remote endpoint without transfer to Dataverse
○ Use Globus API (rather than S3) for store interactions

● Optionally store files in separate sub-directories to support access
control needed for restriction/embargoes

● Extend Dataverse-Globus transfer app for transfer in/out (no download
from Dataverse UI)

Globus Endpoints

Dataverse
Server

Globus Service

Researcher’s Browser
Dataverse Dataset

Transfer In/Out
or Reference

launch

reliable
parallel
transferDataverse-

Globus
Transfer App

Managed
Globus Endpoint
(e.g. over tape
storage)

Globus Transfer
To Dataverse

Globus Store

S3 Store
File Store
Remote Store

External vocabularies
(JavaScript plugin)

Input via the Skomos JavaScript: the original input field is hidden
and replaced by both a vocabulary selector and a dynamic term
selection list.

 Selecting an alternate vocabulary hosted on a Skosmos server.

 Selecting a term from the chosen vocabulary. The Skosmos JavaScript
dynamically populates the list with terms matching what the user has typed.

One of the metadata fields promoted as a search facet on the Dataverse collection page. The JavaScript
replaces the URLs with a human readable form.

To enable JavaScripts to find the fields they should manage, Dataverse
annotates them with appropriate data-* attributes. The HTML source
for the input example above includes attributes that specify “skosmos”
as the protocol, and indicate which Skosmos server should be called and
which vocabularies to allow, to allow free-text entries, and to display
terms in English.

The JSON configuration used by Dataverse to associate the Skosmos
JavaScript with the new metadata field. In addition to information that is copied
to data-* attributes as discussed above, the configuration includes a link to the
desired JavaScript so Dataverse can load it, the name of the metadata field that will
be managed by the script. The retrieval-url and retrieval- filtering entries tell
Dataverse how to retrieve JSON/JSON-LD information about the term which is
then cached for later use.

The Re-Arch Project

● modernize the application

● separate backend and frontend to increase interoperability

● Dataverse backend becomes an API-first application

● extend modularization of backend and frontend

● speed up development and implementation of new UI/UX ideas

● Native accessibility (A11y) and internationalization (i18n) support

● empower the community

Goals

Monolith (though robust Java) application

external
modulesAPI’s

Extra GUI
functionalities (i.e.
controlled
external
vocabularies)

External S3 buckets
Globus endpoints

DV as an headless API-first application

Contributed by DV
Core Team

frontend

backend

SPA (React)

Contributed
autonomously by the
community

React
compone
nts

React
compone
nts

External S3 buckets
Globus endpoints

ex
te

rn
al

 m
od

ul
es

D
V

 m
od

ul
es

D
V

 m
od

ul
es

DV as an headless API-first application

Contributed by DV
Core Team

(e.g.) python or library specific tools

backend

Contributed
autonomously by the
community

ex
te

rn
al

 m
od

ul
es

External S3 buckets
Globus endpoints

D
V

 m
od

ul
es

D
V

 m
od

ul
es

DV plugin marketplace

Full DV Roadmap
[https://www.iq.harvard.edu/roadmap-dataverse-project]

https://www.iq.harvard.edu/roadmap-dataverse-project
https://www.iq.harvard.edu/roadmap-dataverse-project

Thank you

https://dataverse.org
https://github.com/iqss/dataverse

Dataverse Community Meeting 2024
CIMMYT in Texcoco, Mexico

https://dataverse.org
https://github.com/iqss/dataverse

